The alternative to Mahler measure of polynomials in several variables
Објеката
- Тип
- Саопштење са скупа штампано у изводу
- Верзија рада
- објављена
- Језик
- енглески
- Креатор
- Dragan Stankov
- Извор
- The book of abstracts XIV symposium "mathematics and applications” Belgrade, Serbia, December, 6–7, 2024
- Уредник
- Miljan Knežević, Aleksandra Delić
- Издавач
- Univerzitet u Beogradu, Matematički fakultet
- Датум издавања
- 2024
- Сажетак
- We introduce the ratio of the number of roots of a polynomial Pd, greater than one in modulus, to its degree d as an alternative to Mahler measure. We investigate some properties of the alternative. We generalise this definition for a polynomial in several variables using Cauchy’s argument principle. If a polynomial in two variables do not vanish on the torus we prove the theorem for the alternative which is analogous to the Boyd-Lawton limit formula for Mahler measure. We determine the exact value of the alternative of 1 + x + y and 1+x+y +z. Numerical calculations suggest a conjecture for the exact value of the alternative of such polynomials having more than three variables.
- почетак странице
- 43
- крај странице
- 43
- isbn
- 978-86-7589-197-0
- Subject
- mahler measure, argument principle, Boyd-Lawton limit formula
- COBISS број
- 158252041
- Шира категорија рада
- М60
- Ужа категорија рада
- М64
- Је дио
- Partially supported by Serbian Ministry of Education and Science, Project 174032
- Права
- Отворени приступ
- Лиценца
- All rights reserved
- Формат
- Медија
- Stankov1MatPrimene24.pdf
Dragan Stankov. "The alternative to Mahler measure of polynomials in several variables" in The book of abstracts XIV symposium "mathematics and applications” Belgrade, Serbia, December, 6–7, 2024 , Univerzitet u Beogradu, Matematički fakultet (2024)
This item was submitted on 9. јануар 2025. by [anonymous user] using the form “Рад у зборнику радова” on the site “Радови”: http://gabp-dl.rgf.rs/s/repo
Click here to view the collected data.