Approximation of the number of roots that do not lie on the unit circle of a self-reciprocal polynomial

Објеката

Тип
Саопштење са скупа штампано у изводу
Верзија рада
објављена
Језик
енглески
Креатор
Dragan Stankov
Извор
The book of abstracts XIV symposium "mathematics and applications” Belgrade, Serbia, December, 6–7, 2024
Уредник
Miljan Knežević, Aleksandra Delić
Издавач
Univerzitet u Beogradu, Matematički fakultet
Датум издавања
2024
Сажетак
We introduce the ratio of the number of roots not equal to 1 in modulus of a reciprocal polynomial Rd(x) to its degree d. For some sequences of reciprocal polynomials we show that the ratio has a limit L when d tends to infinity. Each of these sequences is defined using a two variable polynomial P(x,y) so that Rd(x) = P(x,xn). For P(x,y) we present the theorem for the limit ratio which is analogous to the Boyd-Lawton limit formula for Mahler measure. We present a double integral formula for approximation the limit ratio. In a previous paper we have calculated the exact value of the limit ratio of polynomials correlated to many bivariate polynomials having small Mahler measure introduced by Boyd and Mossinghoff. We demonstrate here that the double integral formula gives the value very close to the exact value (the error is < 10−5. We show that the limit ratio of the sequence P(x,xn) is not always equal to the limit ratio of the sequence P(yn,y) unlike Mahler measure.
почетак странице
44
крај странице
44
isbn
978-86-7589-197-0
Subject
reciprocal polynomial, envelope, unimodular roots
COBISS број
158252041
Шира категорија рада
М60
Ужа категорија рада
М64
Је дио
Partially supported by Serbian Ministry of Education and Science, Project 174032
Права
Отворени приступ
Лиценца
All rights reserved
Формат
.pdf
Скупови објеката
Драган Станков
Radovi istraživača

Dragan Stankov. "Approximation of the number of roots that do not lie on the unit circle of a self-reciprocal polynomial" in The book of abstracts XIV symposium "mathematics and applications” Belgrade, Serbia, December, 6–7, 2024 , Univerzitet u Beogradu, Matematički fakultet (2024)

This item was submitted on 9. јануар 2025. by [anonymous user] using the form “Рад у зборнику радова” on the site “Радови”: http://gabp-dl.rgf.rs/s/repo

Click here to view the collected data.