Application of the Fuzzy Model in the Evaluation and Selection of Hydraulic Excavators on Open-Pit Lignite Mine

Објеката

Тип
Рад у зборнику
Верзија рада
објављена
Језик
енглески
Креатор
Stevan Đenadić, Miloš Tanasijević, Vladimir Milisavljević, Dragan Ignjatović, Predrag Jovančić
Извор
SSRN Electronic Journal
Издавач
Elsevier BV
Датум издавања
2021
Сажетак
The production of lignite in large open-pit mines is mainly performed with continuously operating equipment, where bucket-wheel excavators, bucket-chain excavators, belt conveyors, and spreaders are the basic machines. Smaller machines, usually of discontinuous operating nature, are commonly categorized as auxiliary machines. This paper presents the research related to the analysis of auxiliary machine parameters with the case study for a hydraulic excavator. The purpose of the analysis was to develop a model of rating quality of service of the engineering system and with the aim of a systematic approach to asset management. The analysis included all relevant parameters of machine operation to aid the decision-making process during the next purchase. The method presented in this paper relies on Fuzzy theory and represents another approach to the analysis of existing data in addition to methods based on Multi-Criteria Decision Making (MCDM).
број страница
6
doi
10.2139/ssrn.3945617
issn
1556-5068
Subject
Fuzzy theory, hydraulic excavator, selection, quality of service, asset management
Шира категорија рада
М30
Ужа категорија рада
М33
Права
Затворени приступ
Лиценца
Creative Commons – Attribution-NonComercial 4.0 International
Формат
.pdf

Stevan Đenadić, Miloš Tanasijević, Vladimir Milisavljević, Dragan Ignjatović, Predrag Jovančić. "Application of the Fuzzy Model in the Evaluation and Selection of Hydraulic Excavators on Open-Pit Lignite Mine" in SSRN Electronic Journal, Elsevier BV (2021). https://doi.org/10.2139/ssrn.3945617

This item was submitted on 7. децембар 2021. by [anonymous user] using the form “Рад у зборнику радова” on the site “Радови”: http://gabp-dl.rgf.rs/s/repo

Click here to view the collected data.