Претрага
13 items
-
E-Connecting Balkan Languages
In this paper we present a versatile language processing tool that can be successfully used for many Balkan languages. This tool relies for its work on several sophisticated textual and lexical resources that were developed for most of Balkan languages. These resources are based on several de facto standards in natural language processing.Cvetana Krstev, Ranka Stanković, Duško Vitas, Svetla Koeva. "E-Connecting Balkan Languages" in Proceedings of the Workshop Workshop on Multilingual resources, technologies and evaluation for Central and Eastern European Languages, 17 September 2009, eds. C. Vertan, S. Piperidis, E. Paskaleva and Milena Slavcheva, Borovets, Bulgaria : Association for Computational Linguistics Stroudsburg, PA, USA (2009) M33
-
E-Waste Management in Serbia, Focusing on the Possibility of Applying Automated Separation Using Robots
Dragana Nišić, Branko Lukić, Zaviša Gordić, Uroš Pantelić, Arso Vukićević. "E-Waste Management in Serbia, Focusing on the Possibility of Applying Automated Separation Using Robots" in Applied Sciences, MDPI AG (2024). https://doi.org/10.3390/app14135685 М22
-
The Nooj System as Module within an Integrated Language Processing Environment
Ranka Stanković, Duško Vitas, Cvetana Krstev. "The Nooj System as Module within an Integrated Language Processing Environment" in Proceedings of the 2007 International Nooj Conference, Cambridge Scholars Publishing (2008) М14
-
Development of Open Educational Resources (OER) for Natural Language Processing
In this paper we present the development of an online course at the edX BAEKTEL platform named “Lexical Recognition in the Natural Language Processing (NLP)”. It is based on the course of the same name for PhD studies at the University of Belgrade, Faculty of Philology. There are not many courses in Computational Linguistics (CL) on OER platforms, and there is none in Serbian either for CL or NLP. We have developed this course in order to improve this ...Cvetana Krstev, Biljana Lazić, Ranka Stanković, Giovanni Schiuma, Miladin Kotorčević. "Development of Open Educational Resources (OER) for Natural Language Processing" in The Sixth International Conference on e-Learning (eLearning-2015), September 2015, Belgrade, Serbia, Belgrade : Belgrade Metropolitan Univesity (2015) M33
-
The Dictionary of the Serbian Academy: from the Text to the Lexical Database
In this paper we discuss the project of digitization of the Dictionary of the Serbo-Croatian Standard and Vernacular Language. Scanning and character recognition were a particular challenge, since various non-standard character set encoding was used in the course of the almost 60-year long production of the dictionary. The first aim of the project was to formalize the micro-structure of the dictionary articles in order to parse the digitized text of and transform it into structured data stored in relational lexical database. This approach ...Ranka Stanković, Rada Stijović, Duško Vitas, Cvetana Krstev, Olga Sabo. "The Dictionary of the Serbian Academy: from the Text to the Lexical Database" in Proceedings of the XVIII EURALEX International Congress: Lexicography in Global Contexts, Ljubljana : Ljubljana University Press, Faculty of Arts (2018) M33
-
Knowledge and Rule-Based Diacritic Restoration in Serbian
In this paper we present a procedure for the restoration of diacritics in Serbian texts written using the degraded Latin alphabet. The procedure relies on the comprehensive lexical resources for Serbian: the morphological electronic dictionaries, the Corpus of Contemporary Serbian and local grammars. Dictionaries are used to identify possible candidates for the restoration, while the dataobtainedfromSrpKorandlocalgrammarsassistsinmakingadecisionbetween several candidates in cases of ambiguity. The evaluation results reveal that,dependingonthetext,accuracyrangesfrom95.03%to99.36%,whilethe precision (average 98.93%) is always higher than the recall (average 94.94%).Cvetana Krstev, Ranka Stanković, Duško Vitas. "Knowledge and Rule-Based Diacritic Restoration in Serbian" in Proceedings of the Third International Conference Computational Linguistics in Bulgaria (CLIB 2018), May 27-29, 2018, Sofia, Bulgaria, Sofia : The Institute for Bulgarian Language Prof. Lyubomir Andreychin, Bulgarian Academy of Sciences (2018): 41-51 M33
-
Machine Learning and Deep Neural Network-Based Lemmatization and Morphosyntactic Tagging for Serbian
The training of new tagger models for Serbian is primarily motivated by the enhancement of the existing tagset with the grammatical category of a gender. The harmonization of resources that were manually annotated within different projects over a long period of time was an important task, enabled by the development of tools that support partial automation. The supporting tools take into account different taggers and tagsets. This paper focuses on TreeTagger and spaCy taggers, and the annotation schema alignment ...Ranka Stanković, Branislava Šandrih, Cvetana Krstev, Miloš Utvić, Mihailo Škorić. "Machine Learning and Deep Neural Network-Based Lemmatization and Morphosyntactic Tagging for Serbian" in Proceedings of the 12th Language Resources and Evaluation Conference, May Year: 2020, Marseille, France, European Language Resources Association (2020) М33
-
SASA Dictionary as the Gold Standard for Good Dictionary Examples for Serbian
Ranka Stanković, Branislava Šandrih, Rada Stijović, Cvetana Krstev, Duško Vitas, Aleksandra Marković (2019)У овом раду представљамо модел за избор добрих примера за речник српског језика и развој иницијалних компоненти модела. Метода која се користи заснива се на детаљној анализи различитих лексичких и синтактичких карактеристика у корпусу састављених од примера из пет дигитализованих свезака речника САНУ. Почетни скуп функција био је инспирисан сличним приступом и за друге језике. Дистрибуција карактеристика примера из овог корпуса упоређује се са карактеристиком дистрибуције узорака реченица ексцерпираних из корпуса који садрже различите текстове. Анализа је показала да ...Српски, добри примери из речника, аутоматизација израде речника, издвајање својстава, Машинско учењеRanka Stanković, Branislava Šandrih, Rada Stijović, Cvetana Krstev, Duško Vitas, Aleksandra Marković. "SASA Dictionary as the Gold Standard for Good Dictionary Examples for Serbian" in Electronic lexicography in the 21st century. Proceedings of the eLex 2019 conference , Lexical Computing CZ, s.r.o. (2019) М33
-
Automatic construction of a morphological dictionary of multi-word units
The development of a comprehensive morphological dictionary of multi-word units for Serbian is a very demanding task, due to the complexity of Serbian morphology. Manual production of such a dictionary proved to be extremely time-consuming. In this paper we present a procedure that automatically produces dictionary lemmas for a given list of multi-word units. To accomplish this task the procedure relies on data in e-dictionaries of Serbian simple words, which are already well developed. We also offer an evaluation ...electronic dictionary, Serbian, morphology, inflection, multiwordn units, noun phrases, query expansionCvetana Krstev, Ranka Stanković, Ivan Obradović, Duško Vitas, Miloš Utvić. "Automatic construction of a morphological dictionary of multi-word units" in Lecture Notes in Computer Science 6233, Advances in Natural Language Processing, Proceedings of the 7thInternational Conference on NLP, IceTAL 2010, Reykjavik, Iceland, August 2010, Springer (2010): 226-237. https://doi.org/10.1007/978-3-642-14770-8_26 M14
-
Production of morphological dictionaries of multi-word units using a multipurpose tool
The development of a comprehensive morphological dictionary of multi-word units for Serbian is a very demanding task, due to the complexity of Serbian morphology. Manual production of such a dictionary proved to be extremely time-consuming. In this paper we present a procedure that automatically produces dictionary lemmas for a given list of multi-word units. To accomplish this task the procedure relies on data in e-dictionaries of Serbian simple words, which are already well developed. We also offer an evaluation ...electronic dictionary, Serbian, morphology, inflection, multi-word units, noun phrases, query expansionRanka Stanković, Ivan Obradović, Cvetana Krstev, Duško Vitas. "Production of morphological dictionaries of multi-word units using a multipurpose tool" in Proceedings of the Computational Linguistics-Applications Conference, October 2011, Jachranka, Poland, Jachranka, Poland : PTI - Polish Information Processing Society (2011) M33
-
Чији је пример? Анализа лексичких обележја на примерима Речника САНУ
У овом раду поставља се питање: да ли се може утврдити ко је аутор неког текста уколико се анализирају искључиво његова лексичка обележја? Како бисмо покушали да добијемо одговор на ово питање, посматрали смо примере у оквиру речничког чланка појединачне лексеме Речника САНУ, који су забележени у пет томова (и то: I, II, XVIII, XIX и XX). Сваки пример је преузет из неког извора на шта упућују скраћенице, наведене у заградама. Од преко 5.000 понуђених извора, определили смо се ...Бранислава Б. Шандрих, Ранка М. Станковић, Мирјана С. Гочанин. "Чији је пример? Анализа лексичких обележја на примерима Речника САНУ" in Српски језик и његови ресурси, Међународни славистички центар, Филолошки факултет, Универзитет у Београду (2019). https://doi.org/10.18485/msc.2019.48.3.ch13 М51
-
Old or New, We Repair, Adjust and Alter (Texts)
Cvetana Krstev, Ranka Stanković (2020)U ovom radu predstavljamo kako se e-rečnici i kaskade transduktora konačnih stanja implementirani u alatu Unitex mogu koristiti za rešavanje tri problema transformacije teksta: ispravljanje tekstova nakon OCR-a, vraćanje dijakritičkih znakova i prebacivanje između različitih jezičkih varijanti.ispravka teksta, OCR greške, restauracija dijakritika , jezičke varijante, elektronski rečnik, transduktori konačnih stanjaCvetana Krstev, Ranka Stanković. "Old or New, We Repair, Adjust and Alter (Texts)" in Infotheca, Faculty of Philology, University of Belgrade (2020). https://doi.org/10.18485/infotheca.2019.19.2.3 М53
-
A Data Driven Approach for Raw Material Terminology
Olivera Kitanović, Ranka Stanković, Aleksandra Tomašević, Mihailo Škorić, Ivan Babić, Ljiljana Kolonja (2021)The research presented in this paper aims at creating a bilingual (sr-en), easily searchable, hypertext, born-digital, corpus-based terminological database of raw material terminology for dictionary production. The approach is based on linking dictionaries related to the raw material domain, both digitally born and printed, into a lexicon structure, aligning terminology from different dictionaries as much as possible. This paper presents the main features of this approach, data used for compilation of the terminological database, the procedure by which it has ...sirovine, rudarstvo, terminologija, rečnik, terminološka aplikacija, mobilna aplikacija, digitizacija, leksički podaci, korpusi, otvoreni povezani podaciOlivera Kitanović, Ranka Stanković, Aleksandra Tomašević, Mihailo Škorić, Ivan Babić, Ljiljana Kolonja. "A Data Driven Approach for Raw Material Terminology" in Applied Sciences, MDPI AG (2021). https://doi.org/10.3390/app11072892 М22