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Abstract: The Adria-derived Drina—Ivanjica Unit of the Internal Dinarides represents a composite basement-cover thrust
sheet passively carrying obducted Jurassic ophiolites and post-obduction Upper Cretaceous sedimentary rocks, penetrated
by post-orogenic Miocene igneous rocks. This study presents the first paleomagnetic results from the Drina—Ivanjica Unit
obtained at a total of 34 geographically distributed localities, representing Triassic—Jurassic carbonates, Upper Cretaceous
carbonate and flysch successions, as well as Miocene igneous rocks. Paleomagnetic directions for the igneous rocks and
the Upper Cretaceous flysch, which had clearly remagnetized during Miocene magmatism, point to a 30° clockwise
(CW) rotation, which must have taken place after 20 Ma. This angle perfectly agrees with the earlier-published value for
both the Western and Eastern Vardar zones (including the Jadar—Kopaonik thrust sheet, the Sava Zone, and the Cretaceous
overstepping sequence of the Eastern Vardar ophiolitic unit), suggesting a coordinated rotation between them and
the Drina—Ivanjica Unit. Results of the present study set a younger age constraint (20 Ma) for the commencement of the
coordinated CW rotation instead of the previously suggested 23 Ma. The rotation may have connected to the extension
induced by the slab rollback of the Carpathians, which was also responsible for the opening of the Pannonian Basin.
The paleomagnetic directions for the Cenomanian—Turonian carbonates, which are situated far from the magmatic bodies,
are interpreted in terms of a minor counter-clockwise (CCW) rotation taking place before the Miocene CW rotation.
The Triassic—Jurassic carbonates of the Drina—Ivanjica Unit have post-tilting magnetizations, which were likely induced
by the thermal effect of the obducted ophiolites. The overall mean paleomagnetic direction suggests a rotation of about
50° CCW between 150-20 Ma, which is in line with the well-documented post-150 Ma CCW rotation of the Adriatic

microplate.
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Introduction

The Dinarides form a SW-vergent fold-and-thrust belt in
Southeast Europe that evolved from the complex Mesozoic
evolution of the northern branch of the Neotethys Ocean,
which separated the Adriatic and European plates. The subse-
quent deformation connected to the rotation and subduction of
the Adriatic microplate and the formation of the Pannonian
Basin (Pami¢ et al. 2002; Karamata 2006; Schmid et al. 2008,
2020; Cvetkovi¢ et al. 2016; Tolji¢ et al. 2018, 2019). Today,
remnants of the Neotethys Ocean occur as large ophiolite
thrust sheets, which are underlain with tectono-sedimentary
mélanges that are arranged along two major subparallel,
NW(NNW)-SE(SSE) trending belts extending from the
Pannonian Basin to Greece (Fig. 1; Bernoulli & Laubscher
1972; Schmid et al. 2008; Cvetkovi¢ et al. 2016; Tolji¢ et al.
2019). The Western Vardar ophiolite belt comprises ophio-
lites obducted westward onto the eastern passive margin of
the Adriatic plate in the Late Jurassic to Early Cretaceous
(e.g., Dimo-Lahitte et al. 2001; Schmid et al. 2008, 2020;
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Borojevié-Sostari¢ et al. 2012, 2014). The Eastern Vardar
ophiolites represent the ophiolites, which were tectonically
emplaced eastward above parts of the European margin
(Schmid et al. 2008, 2020; Tolji¢ et al. 2018). In the Internal
Dinarides, the two belts are separated by the Sava suture zone
(Schmid et al. 2008; Ustaszewski et al. 2010) or the Central
Vardar Zone (Tolji¢ et al. 2018), which represents the Paleo-
gene suture after the closure of the remnant Neotethys and
mark the final collision of Adria with Europe (Ustaszewski et
al. 2010). The Drina—Ivanjica Unit is a composite nappe unit
of the Internal Dinarides, which was an eastern distal part of
the Adriatic microplate (Bortolotti et al. 2005; Schmid et al.
2008, 2020; Gawlick et al. 2017). The Adriatic affinity of
the Drina—Ivanjica Unit might be recognized in paleomagnetic
directions, since westerly declinations have been systemati-
cally observed in stable and imbricated Adria (Marton &
Veljovi¢ 1983, 1987; Marton & Milicevi¢ 1994; Marton et al.
2003, 2008, 2010, 2011, 2014, 2017, 2022a; Marton & Moro
2009; Werner et al. 2015). The youngest formations which still
indicate CCW rotation are of Eocene age from the stable Istria
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Fig. 1. Tectonic map of the Dinarides (after Schmid et al. 2020). Paleomagnetic sampling areas of earlier studies from the Vardar Zone are
shown as ellipsoids: A — Belgrade area and Avala mountains (Marton et al. 2022b); B — wider Rudnik area (Lesi¢ et al. 2019); C — Kopaonik

area (Lesi¢ et al. 2019).

(Marton et al. 2008, 2010), the Adige embayment (Marton
et al. 2011), and from Bra¢ Island (Marton et al. 2022a).
Compared to the large paleomagnetic dataset available for
the External Dinarides, paleomagnetic investigations of the
Internal Dinarides started only recently, with results from dif-
ferent tectonic units (Jadar—Kopaonik thrust sheet, Sava Zone,
Cretaceous overstepping sequence of the Eastern Vardar
ophiolitic unit) of the Vardar Zone sensu Tolji¢ et al. (2018)
(Lesi¢ et al. 2019; Marton et al. 2022b). Post-orogenic Oligo-
cene igneous rocks and remagnetized post-obduction Upper
Cretaceous deposits from the Western (Adriatic affinity),
Central (suture zone) and Eastern (European affinity) Vardar
zones have provided evidence for their coordinated about 30°
CW rotation after 23 Ma, which is connected to the extension
and formation of the Pannonian Basin due to rollback of the
Carpathian slab. This study presents the first paleomagnetic
results from post-orogenic Miocene igneous rocks and from
post-obduction Upper Cretaceous sediments of the more
external Drina—Ivanjica Unit to search regional extent of the
CW rotations. Additionally, we present paleomagnetic results
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from the pre-obduction Triassic—Jurassic strata of the Drina—
Ivanjica Unit, which are supposed to have originated on the
distal passive margin of the Adriatic microplate (e.g., Gawlick
et al. 2017), and should therefore record the well-documented
CCW rotation of Adria (e.g., Marton et al. 2017 and references
therein).

Geological background

The Dinarides consist of two main parts: the External and
Internal Dinarides (Fig. 1). The External Dinarides are com-
posed predominantly of Triassic to Eocene shallow water
platform carbonates occasionally intercepted by zones of
deep-water deposition. The Internal Dinarides are dominated
by Jurassic ophiolites and continental tectonic units derived
from distal passive margins of Adria (Africa-derived micro-
plate) and Europe (Tisza and Dacia units). The nappe-system
is covered by post-orogenic sedimentary formations and
intruded by Oligocene to Miocene igneous rocks (e.g., Schmid
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et al. 2008, 2020; Cvetkovi¢ et al. 2016; Tolji¢ et al. 2018,
2019).

The Drina—Ivanjica Unit represents one of the Adria-derived
composite nappe units of the Internal Dinarides that passively
carry obducted ophiolites and overstep sedimentary forma-
tions (Schmid et al. 2008, 2020), intruded by post-orogenic
Miocene igneous rocks (Cvetkovié et al. 2004, 2016; Schefer
et al. 2011). In the west, the Drina—Ivanjica Unit overthrusts
the East Bosnian-Durmitor composite thrust sheet. The thrust
zone has a character of out-of-sequence thrusting, cutting
up obducted ophiolite massifs that had ceased by the early
Late Cretaceous (Schmid et al. 2008). The observed top-to-
WNW deformation formed under anchizonal metamorphic
conditions and was dated by K—Ar method at 150-135 Ma
(Porkolab et al. 2019). In the east, the Drina—Ivanjica Unit is
overthrust by another even more distal Adria-derived unit —
the Jadar—Kopaonik Unit (Dimitrijevi¢ 1997; Schmid et al.
2008, 2020). The two units are separated by a long belt of
highly deformed uppermost Cretaceous syn-contractional
turbidites (the Kosovska Mitrovica Flysch of Dimitrijevi¢
1997). The contact zone is affected by a Late Cretaceous—
Paleocene dextral transpressive fault system (Zvornik Fault/
suture; Karamata et al. 1994; Dimitrijevi¢ 1997). The nappe-
pile east of the Drina—Ivanjica Unit is also denoted as the
Vardar Zone (e.g., Kossmat 1924; Dimitrijevi¢ 1997; Cvetkovi¢
etal. 2016; Tolji¢ et al. 2018, 2019), which is a 40-70 km wide
zone, comprising units that derive from the Adriatic passive
margin, the oceanic lithosphere of the Meliata, Vardar, and
Sava oceans, or the distal European margin (Cvetkovi¢ et al.
2016). It is divided into three subzones (Tolji¢ et al. 2019):
The Western Vardar Zone of Adriatic affinity (also known as
Srem, Jadar, and the Kopaonik blocks or Jadar—Kopaonik
thrust sheet; e.g., Dimitrijevi¢ 1997; Schmid et al. 2008),
the Eastern Vardar Zone of European affinity (the Eastern
Vardar ophiolitic unit obducted over the Serbo—Macedonian
massif), and the Central Vardar Zone representing the suture
between the two (the Sava Zone of Schmid et al. 2008, 2020).

The Drina—Ivanjica Unit is composed of a Late Paleozoic
low-grade metamorphic basement (Milovanovi¢ 1984; Trivi¢
et al. 2010) overlain by Triassic—Jurassic sedimentary cover
deposited on the distal continental margin of the Adriatic
microplate (Gawlick et al. 2017). The oldest Triassic strata are
represented by continental siliciclastic rocks that grade into
a mixed siliciclastic—carbonate marine succession (Dimitrijevi¢
1997). The Middle Triassic is represented by Anisian Guten-
stein- and Steinalm-type limestones followed by the depo-
sition of Ladinian—Carnian, thin-bedded, red nodular and
siliceous limestones (Sudar 1986; Dimitrijevi¢ 1997; Chiari et
al. 2011). Substantial deepening of the Adriatic margin prior to
ophiolite obduction is manifested by the deposition of cherty
limestones and radiolarites during the Early and Middle
Jurassic (Djeri¢ et al. 2007; Gawlick et al. 2009, 2016; Chiari
et al. 2011). The basement-cover of the Drina—Ivanjica Unit
occurs as tectonic windows from below obducted ophiolite,
with tectono-sedimentary mélange at its base. Ophiolites of
the Drina—Ivanjica Unit consist of serpentinized peridotites,
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harzburgites, gabbros, diabases, basalts, and locally, granites
(Dimitrijevi¢ 1997; Pami¢ et al. 2002; Chiari et al. 2011).
The obduction of ophiolites onto the Drina—Ivanjica Unit took
place during the Late Jurassic to Early Cretaceous times
(Dimo-Lahitte et al. 2001; Borojevié-Sogtari¢ et al. 2012,
2014; Gawlick et al. 2016, 2017).

The ophiolites and underlying Drina—Ivanjica basement-
cover are truncated by an erosional unconformity and sealed
by sedimentation of clastic terrestrial deposits rapidly fol-
lowed by a widespread carbonate platform system since
the late Early Cretaceous (Chiari et al. 2011; Nirta et al. 2020).
At present, the Cretaceous sediments crop out over areas of
varying extension — from hundred-kilometre-wide, unde-
formed, continuous cover units to small-scale, tectonically-
disintegrated slivers (Nirta et al. 2020). The overstep deposits
consist of terrestrial, transitional, and shallow-marine coarse-
grained clastic sedimentary rocks and of marine fine-grained
clastic sediments and carbonates passing to flysch-type rocks.
In the studied area, the overstep deposits are divided into three
lithostratigraphic groups according to their age and deposi-
tional environment (Chiari et al. 2011; Nirta et al. 2020).
The Mokra Gora Group sediments (upper Aptian—Maastrich-
tian) were deposited on top of previously-obducted and eroded
ophiolites; the Kosjeri¢ Group (Cenomanian—Campanian)
overlies both ocean-derived and continental-derived rocks,
while the Guca Group (Campanian—Maastrichtian) covers
the continental basement exclusively (Nirta et al. 2020).
The Mokra Gora succession starts with discontinuous beds of
laterites, which are covered by sandstones and marls bearing
ophiolitic detritus (Nirta et al. 2020). These are topped by
Albian to Cenomanian (Banjac 1994) reddish, fossiliferous
limestones and marlstones (Nirta et al. 2020). The Mokra Gora
Sequence is terminated by massive, thick-bedded rudist bea-
ring limestones of middle Turonian—Santonian age (Radoici¢
& Schlagintweit 2007). The Kosjeri¢c Group is made up of
upper Cenomanian shallow marine limestones that gradually
pass into middle Turonian-lower Campanian hemipelagic
marlstones (Radoici¢ & Schlagintweit 2007). The Guca Group
succession starts with littoral to slope facies clastic deposits,
followed by well-bedded limestones and calcareous sand-
stones, which develop upwards into rudist-bearing massive
limestones (Chiari et al. 2011; Nirta et al. 2020).
The uppermost part is made of Campanian to Maastrichtian
(Danian?) turbidite beds composed of calcareous marls,
graded biosparites, siltstones, and olistostromes (Ciri¢ 1958;
Dimitrijevi¢ 1997; Dimitrijevi¢ & Dimitrijevi¢ 2009).

The final closure of the Neotethys (Vardar) Ocean and the
subsequent continental collision was, after the Late Eocene,
followed by a transtensional tectonic regime associated with
core-complex exhumation and the opening of small sedimen-
tary basins (Ili¢ & Neubauer 2005; Ustaszewski et al. 2010;
Zelic et al. 2010). The extension also triggered Miocene mag-
matic activity, which is represented in the studied area by
the Golija pluton and by small ultrapotassic basalt flows with
associated volcanoclastics (Fig. 2). The Golija pluton consists
of high-K calc-alkaline, I-type granodiorite intrusions and
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Fig. 2. Simplified geological map (WGS 84, Pseudo-Mercator projection, EPSG:3857) of the central part of the Drina—Ivanjica Unit, based on
1:100 000 sheets of Geological Maps of former Yugoslavia (Osnovna Geoloska Karta SFRJ). Paleomagnetic sampling localities/sites are shown

as dots.

quartz latite extrusions and volcanoclastics with ages deter-
mined by U-Pb dating of zircons at 20.58-20.17 Ma (Schefer
et al. 2011). Intrusive rocks of the Golija pluton are com-
positionally-similar to the granitoids of the Kopaonik and
Drenje massifs (belonging to the Western Vardar Zone of
Tolji¢ et al. 2019), but contain more potassium and show
higher crustal influence during their magma generation
(Schefer et al. 2011).

Paleomagnetic sampling and laboratory processing

Paleomagnetic samples were drilled with a portable gaso-
line-powered or cordless electrical drill with water cooling.
Orientation of the samples was done with a magnetic compass,
or in the case of magmatic rocks, with a sun compass as well.
Altogether, 358 individually-oriented samples were drilled at
34 sites/localities covering a variety of rocks representing
different ages, lithology, and depositional settings (Fig. 2,
Tables 1, 2, 3). Basalts (K—Ar age 9.1, 21.5 and 23.0 Ma,
Cvetkovi¢ et al. 2004) outcropped east of Nova Varos and
southwest of Sjenica were sampled at three sites (sites M1—
M3). In the Miocene Golija pluton (inset in Fig. 2, Table 2),
ten sites were sampled (M4-M13) from granodiorites (U-Pb
age 20.6-20.2 Ma, Schefer et al. 2011) and quartz latites.
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In the Golija area, we also sampled overstep Campanian—
Maastrichtian dark grey flysch deposits of the Gu¢a Group
(Table 3, localities S1-S4; Chiari et al. 2011), including one
from the thermocontact zone of quartz latite (locality S4).

Overstep late Early to Late Cretaceous clastic-carbonate
deposits, preserved either on top of the obducted ophiolites or
directly on the basement/cover of the Drina—Ivanjica Unit,
were sampled at geographically-distributed localities (Fig. 2,
Table 3). From the Kosjeri¢ Group (Chiari et al. 2011; Nirta et
al. 2020), outcropped in the north-eastern part of the study
area, Turonian—Campanian marls were sampled (Fig. 2, Table 3,
locality S5). From the occurrences of the Late Cretaceous
deposits east of the Zlatibor massif, we sampled Cenomanian—
Turonian marly dolomitic limestones underlain with bauxite
mudcakes (localities S6-S8). West of the Zlatibor massif,
Cenomanian—Turonian pelagic carbonates of the Mokra Gora
Group (Chiari et al. 2011; Nirta et al. 2020) were sampled
(Fig. 2, Table 3, localities S9-S14).

The sampled Triassic—Jurassic cover strata of the Drina—
Ivanjica Unit included thin-bedded to massive Lower to
Middle Jurassic limestones (localities S15-S18) outcropped
near Sjenica. Upper Triassic thin-bedded limestones (localities
S19, S20) and Anisian Rosso Ammonitico limestones (locality
S21) were sampled in the area north-west and east of the
Zlatibor massif (Fig. 2, Table 3).
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From the drilled cores, one or several
standard-size, one-inch diameter specimens
were cut in the laboratory. The NRM (Natu-
ral Remanent Magnetization) was mesured
using a JR-4 and JR-5 spinner magneto-
meters (Agico, Brno, former Geofyzika
Brno). Afterwards, anisotropy of magnetic
susceptibility (AMS) using a KLY-2 Kappa-
bridge (Agico, Brno, former Geofyzika

Table 2: Summary of site mean paleomagnetic directions of the Miocene igneous sites
from the Drina—Ivanjica Unit. K—Ar ages for the basalts are 21.5 Ma (M1) and 23.0 Ma
(M3) from Cvetkovic¢ et al. (2004), U-Pb age for the granodiorites is 20.6-20.2 Ma from
Schefer et al. (2011). Estimated ages for the quartz latites are the same as for the grano-
diorites. Key: Lat. N and Lon. E — geographic coordinates (WGS 84), n/no — number of
used/collected samples; D, I — declination, inclination (corrected declination with IGRF-13
model, Alken et al. 2021); k and 095 — statistical parameters (Fisher 1953). Sites are num-
bered according to Fig. 2. * Mean direction was evaluated with great circle analysis com-
bined with stable point, defined as the overall mean direction of the remaining sites
(McFadden & McElhinney 1988). ** Mean direction was calculated from stable end points.

Brno) was measured. The AMS measure- Lat N
ments were carried out on rocks with | Cede Locality Lon.E[] ™mo D[] T[] ko 2957
susceptibilities in order of at least 10~ SI. Basalts
The AMS data were evaluated on sample Ml Podomar * 43.4380 56 1008 555 i i
level with the Aniso program (Bordas YM 3250-255 19.8992 ' '
1990) and at site/locality level by Anisoft M3 Trijebine 432169 1313 1955 592  242.0 57
4.2 software (Chadima & Jelinek 2008), YM 3265-268 19.9364 ‘ ‘ ‘ '
both based on the research of Jelinek & Golija magmatic complex
Kropacek (1978). Granodiorites

For pilot specimens from each sampled | Golijska Reka 1 * 43.3661 56 2051  —57.0 _ _
group, stepwise thermal (TH) and alterna- 27378 20.2591
ting field (AF) demagnetizations were | wms Gogjfg*; I};ﬁaz ‘2‘(3)%}3 05 Jarge scatter
carried out. For thermal demagnetization, :

. Quartz latites
a TSD-1 thermal demagnetizer (Schonstedt Dokt FEVER
Instrument Company, Reston) was used. | M6 26572 202661 078 large scatter
Magnetic susceptibility was measured after v Odvracenica 1 432569 o 207 als 2850 .
each heating step to detect changes in mag- Z137-145 20.3436 : : : :
netic mineralogy during thermal demagne- M8 Odvraéenica 2 43.2529 6/7 208 370 195.0 48
tization. Alternating field demagnetization 2 146-152 20.3472
. : Odvracenica 3 * 43.2508 B B B

was carried out on LDA;}SA (?glcc?, Br1.10) M9 7 153-158 03556 6/6 178.8 50.6
and Demag 01-79 (Tec nical University, o Veljovici 43,4983 o6 1 .
Budapest) demagnetizers. Based on the Z173-178 20.3576 arge scatter
behaviour of the pilot samples during Ml Devici 1 ** 43.3845 . 73 a4 350 .
demagnetization, the remaining samples Z189-195 20.3975 ' ' ' '
were demagnetized by the more efficient | vp2 , 1961_32%"110"238_283 ‘2‘(3)‘3‘;;2 8/12 452 4639 277 107
method and in as many steps as was neces- b 5 43'4468
sary to isolate a ChRM (Characteristic | MI3 7506277 03607 1012 3339 4410 980 49

Remanent Magnetization) component.

The components of the NRM were deter-

mined by principal component analysis

(Kirschvink 1980). Mean paleomagnetic directions for each
locality/site were calculated using Fisher (1953) statistics.
Paleomagnetic stability tests (e.g., tilt test, reversal test) were
made with PMGSC 4.2 (Enkin 2003a) and PMagTools 4.2
(Hounslow 2006) software. To identify magnetic minerals
magnetic mineralogy experiments were carried out on selected
specimens. These experiments included acquisition of labora-
tory-induced remanent magnetization (IRM) using a Molspin
pulse magnetizer (maximum field 1 T), followed by a thermal
demagnetization of the three-component IRM (Lowrie 1990)
accompanied by susceptibility monitoring; and thermal vs.
susceptibility measurements up to 700 °C, either from liquid
nitrogen temperature or from room temperature using a KLY-2
Kappabridge combined with CSL Low Temperature Cryostat
and CS-3 High Temperature Furnace apparatuses (AGICO,
Brno; Parma et al. 1993; Hrouda 1994). All laboratory experi-
ments were carried out in the Paleomagnetic Laboratory at

GEOLOGICA CARPATHICA, 2023, 74, 5, 423-440

SARA, Budapest (former Mining and Geological Survey of
Hungary).

Results
Miocene magmatic rocks

Quartz latites of the Golija pluton show highly-varying
susceptibilities (10>-107* SI) and are characterized by weak
anisotropy. The low degree of anisotropy was also observed in
basalts. The magnetic foliation is well-developed in the quartz
latites, while in the basalts, it is weak (Table 1). Granodiorite
samples have high AMS (P =45 %), but the AMS ellipsoids
are not well-clustered at the site level (Table 1).

The IRM acquisition curves indicate that the dominant mag-
netic carrier in the quartz latites is a soft coercivity magnetic
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mineral (Fig. 3). Susceptibility vs. temperature experiments
proved that this soft, magnetic mineral is magnetite (Verwey-
transition at =—150 °C, susceptibility falls near 580 °C, reversi-
ble cooling and heating curves; Fig. 3, M9, M12). The sample
from site M7, representing one block only, shows a different
magnetic behaviour, as the saturation was slower during the
IRM acquisition, and the susceptibility frequently changed
during heating (Fig. 3, M7). The susceptibility changes are
probably connected to the exsolution of titanomagnetite into
magnetite and paramagnetic ilmenite (Curie-point at 580 °C,
smooth cooling curve). Changes in magnetic mineralogy were
obvious during thermal demagnetization as well (susceptibi-
lity changes; Fig. 4, M7a). In granodiorites, paramagnetic
minerals are dominant (Fig. 3, M4).

For the majority of sites, stepwise TH or AF demagnetiza-
tions provided excellent linear segment decaying towards

VELKI, MARTON, CVETKOV and KOVER

the origin of the Zijderveld diagram (Zijderveld 1967; e.g.,
Fig. 4, M3, M7a, M7b). These segments were defined by the
demagnetizing steps between 400-580 °C (TH) or between
20-100 mT (AF). Composite NRMs were characteristic for
some of the igneous sites, where the paleomagnetic vector
during demagnetization moved along the remagnetization
circle (Fig. 5). In such cases, the overprint magnetization was
either eliminated (by 15 mT; Fig. 4, M12) or a portion of it
resisted the demagnetization, resulting in a shallow inclination
(Fig. 5, M1, M4 and M9). In the latter cases, great circle
analysis combined with stable end-points (McFadden &
McElhinney 1988), the latter, defined as the well-clustered site
mean directions of the remaining sites, provided useful site
means for further interpretation (Table 2). Site M2 was exclu-
ded from the tectonic interpretation due to the significantly
younger age (9.1 Ma; Cvetkovi¢ et al. 2004).

160000 g IRM 120 mT 73%; IRM 200 mT 89% 300000 gy IRM 120 mT 98%; IRM 200 mT 100% 40000 § IRM 120 mT 97%; IRM 200 mT 99%
140000 250000 35000
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Fig. 3. Magnetic mineralogy experiments of the Miocene magmatic rocks, Golija area. First row: typical IRM acquisition curves; second and
third rows: typical magnetic susceptibility vs. temperature curves. Magnetite can be identified in quartz latites (quick IRM saturation, low-
temperature Verwey-transition, susceptibility drop near 580°, identical cooling and heating curves), except for one block of site M7 (slower
saturation, susceptibility changes between 150400 °C). Granodiorite samples (M4) have substantial amount of paramagnetic minerals (highly

visible paramagnetic hyperbola during heating).
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Fig. 4. Typical demagnetization curves for igneous and sedimentary rocks of the Drina—Ivanjica Unit. Some of the quartz latites (e.g., M12)
and limestones (e.g., S10, S18) have composite NRMs. Samples from the block of M7a and locality S/8 indicate mineralogical changes during
TH demagnetization. Key: Zijderveld diagrams (Zijderveld 1967) are oriented in geographically and, in the case of AF demagnetization they
are accompanied by intensity (open circles) vs. demagnetizing field diagrams and by NRM intensity (open circles)/susceptibility (full circles)
vs. temperature diagrams, when the method is thermal (TH) demagnetization. In the Zijderveld diagrams, full dots are the projections of
the NRM vector onto the horizontal; circles — into the vertical. Site/locality numbers are identical with Tables 2, 3 and Fig. 2.

The magnetic fabric is characterized by a dominant foliation
with sub-ordinate lineation (Table 1). The magnetic fabric is
most likely governed by a mixture of paramagnetic and ferro-
magnetic minerals. The former can be pyrite, indicated by

Campanian—Maastrichtian flysch — Golija area

Magnetic susceptibility values are consistent for flysch-type
rocks of the Golija area and are in the range of 10 SL

GEOLOGICA CARPATHICA, 2023, 74, 5, 423-440
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Composite NRM N Fig. 5. Typical behaviopr of the compos?te NRMs Qf th~e Miocene
magmatic samples during demagnetization (the directions move
along the remagnetization curves). Plotted sites had overprint mag-
netization, which could not be eliminated by the demagnetization
procedures. Overall mean direction was calculated (blue square) for
the well-clustered remaining sites (M3, M7, M8, MI11, M12).
Combined great circle analysis (McFadden & McElhinney 1988) with
stable end point (overall mean direction) resulted in new paleomag-
netic directions (green stars) for the sites M1, M4 and M9.

<
<

@® — Positive inclination
O --- Negative inclination

Fig. 6. IRM acquisition curves and thermal demagnetization of the
three component IRM (method by Lowrie 1990) in sedimentary rocks
from the Drina—Ivanjica Unit. Presence of high coercivity magnetic
mineral (goethite or hematite) was recognised at localities S6, S16,

Thermally S18 and S21. The soft components decay by the Curie-point of mag-

NRM demagnetized netite. From top to bottom: IRM acquisition; thermal demagnetization
o—¥ of the three-component IRM; susceptibility after each heating step.
The components of the IRM were acquired in fields of 1.0 T (squares),

0.36 T (full circles) and 0.12 T (open circles).
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susceptibility growth after 400 °C (Fig. 6, S1); the latter can
be magnetite (Fig. 6, S1).

The AF demagnetizations resulted in linear components
and did not decay to the origin of the Zijderveld diagram
(Fig. 4, S1). Most of the flysch samples were destroyed by
heating above 350—400 °C during thermal demagnetization.
The linear segments in both cases had similar directions;
therefore, it was possible to define the direction of an over-
print component between 5-20 mT or 150-350 °C (Table 3).
In some samples, the presence of a more stable magnetization
was detected at 400-500 °C (the paleomagnetic direction
moved along the remagnetization circle, Fig. 4, S1), but the
attempt to determine the direction of that component failed,
as the method of intersection of remagnetization curves (Halls
1978) yielded a poorly-constrained direction.

Cenomanian—Turonian dolomitic limestones, marls — Zlatibor
area

The demagnetization of the three component IRM (Lowrie
1990) indicate the presence of goethite (intensity of the
hard component decreased by 150 °C, Fig. 6, S6). However,
the main carrier of the NRM is magnetite based on the demag-
netization experiments (no significant intensity decrease by
150 °C, intensity decayed continuously up to 580 °, Fig. 4,
S6). The AF method (e.g., Fig. 4, S7) was applied to the groups
that a had weak magnetic signal (102 mA/m, S6a, S7, S8),
while the thermal method (e.g., Fig. 4, S6) was used for the
stronger samples (S6b). Both methods resulted in statistically,
well-defined mean directions (Table 3).

Cenomanian—Turonian pelagic limestones — Mokra Gora
area

The IRM acquisition curves indicate that soft coercivity
magnetic mineral is dominant. Based on the Lowrie experi-
ments, it can be interpreted as magnetite (soft component
decays up to 580 °C, Fig. 6, S10, S12).

The AF demagnetization method was very efficient in this
group. Although the NRM was composite, the soft component
was easily removed after first demagnetization steps (in alter-
nating fields of 3-5 mT). Well-defined ChRM components
were isolated at five of six localities sampled in this area (e.g.,
Fig. 4, S10, S14).

Triassic and Jurassic limestones

Negative susceptibilities were observed in most of the
Triassic and Jurassic limestones, except for the thin-bedded
Middle Jurassic red limestones sampled at localities S15 and
S16, where weak anisotropy with equally-developed foliation
and lineation were observed (Table 1).

The Lowrie experiments indicated the presence of a high
coercivity magnetic mineral. In some cases, it is recognized
as goethite. The IRM intensity dropped at 150 °C and suscep-
tibility increased near 350 °C, suggesting the alteration of
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goethite to hematite (e.g., Fig. 6, S18). At other localities,
the hard magnetic mineral is probably hematite, since the hard
component was still significant after 550 °C (Fig. 6, S16,
S21). The three component IRM demagnetization curves also
revealed a soft component with the Curie-point of the mag-
netite. However, during the thermal demagnetization of the
NRM, much of the intensity was lost by 400 °C (Fig. 4, S16,
S18, S21). This can be attributed to the different grain sizes
of the magnetite dominant in the NRM and the IRM
respectively.

The Triassic and Jurassic limestones were predominantly
thermally demagnetized (Fig. 4, S16, S18, S21), as the AF
method often yielded chaotic demagnetization curves. After
the elimination of the overprint component (by 250 °C), the
thermal steps between 250—400 °C resulted in clear linear seg-
ments for ChRM evaluation.

Discussion

The late Oligocene—Miocene extension and volcanism
produced several magmatic provinces within the Internal
Dinarides and the Vardar Zone. The Early Miocene magma-
tism is probably connected to the rollback effect of the Car-
pathian subduction (e.g., Cvetkovic¢ et al. 2004; Ustaszewski
et al. 2010), although other studies propose post-Eocene
delamination of the lithospheric mantle beneath the Dinarides
as the main factor of the magma generation (e.g., Schefer et al.
2011; Balling et al. 2021). Apart from the Golija magmatic
complex, I-type granitoids also occur and were paleomagneti-
cally studied in the Kopaonik region (Lesi¢ et al. 2013, 2019).
A common feature of these plutons is the high degree of AMS
anisotropy; however, there is a significant difference in the
orientation of the AMS fabrics at the site level. The Golija
pluton exhibits no preferred orientation (Table 1), while those
from the Kopaonik area are characterised by well-defined
magnetic foliation and lineation (Lesi¢ et al. 2013), similarly
to the younger Pohorje pluton, related to the Periadriatic shear
zone (Marton et al. 2006; Fodor et al. 2020). The significant
difference in the type of magnetic fabrics implies that the
I-type granitoids (31.8-30.7 Ma, Schefer et al. 2011) of the
Kopaonik region cooled down during active deformation,
while the Golija intrusions (20.6-20.2 Ma, Schefer et al. 2011)
in the absence of active deformation. The chaotic AMS fabric
in the latter must have been governed by the viscous and
slow-flowing magma (Tarling & Hrouda 1993). Oligocene
dacitoandesites (32-30 Ma; Cvetkovi¢ et al. 1995) of the
Kopaonik region (Lesi¢ et al. 2013) and quartz latites of
the Golija complex (Table 1) are both characterized by a low
degree of AMS with dominant foliation, indicating that
during the formation of these rocks, there was no active
deformation.

Paleomagnetic overall mean direction for the Miocene mag-
matic sites (excluding site M13) and the remagnetized Upper
Cretaceous flysch localities suggest about a 30° CW vertical
axis rotation (Fig. 7A,B). Remagnetization of the flysch is
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optimal untilting
1.2+ 1476 %

tilt test (Enkin 2003b)
indeterminate

Fig. 7. A — Site mean directions (circles) and overall mean direction (black square with the respective a95) for Miocene igneous rocks (red)
and remagnetized Campanian—Maastrichtian flysch (blue) on stereographic projection. Directions of sites M1, M4 and M9 were evaluated with
combined great circle analysis (pink circles). Open circles represent negative inclinations; the red star represents the present-day geomagnetic
field in the study area. B— Site mean directions and overall mean direction (all turned to normal polarity) after Watkins (1973) cut-off method.
C — Mean directions of the flysch rocks before (left) and after (right) tilt correction. Tilt test result (Enkin 2003b) with the syn-tilting diagram
is also shown. Key: D, I — declination and inclination of the overall mean direction; 095 and k — statistical parameters (Fisher 1953); s —angular

standard deviation (Tauxe & Kent 2004); n — number of sites/localities.

supported by the well-clustered paleomagnetic directions
before tilt correction with the same overall mean direction as
the Miocene igneous rocks. While most of the magmatic sites
have negative inclinations (Fig. 7A), all the flysch localities
(situated close to site M12) have normal polarity mean direc-
tions. The presence of both polarity directions in our data set
may account for the outlier direction (M13), which could have
been acquired during polarity change of the magnetic field of
the Earth, since this site was co-magmatic with the rest of the
sites based on the thin section analysis.

The combined result of the Miocene magmatic rocks and
the remagnetized flysch of the Drina—Ivanjica Unit (Table 4) is
in a perfect fit with the earlier published paleomagnetic results
of the adjacent Vardar Zone (Lesi¢ et al. 2019; Marton et al.
2022b) obtained for Oligocene magmatic rocks from the
Kopaonik region (Western Vardar Zone), Oligocene—Miocene
extrusives and remagnetized Upper Cretaceous sediments from
the Rudnik area (Western Vardar Zone), Oligocene dykes, and
remagnetized Upper Cretaceous sediments from the Eastern
Vardar Zone (Fig. 8). This implies a coordinated rotation for
the Drina—Ivanjica Unit and the Vardar Zone; however, com-
pared to the earliest possible time, 23 Ma (Marton et al.
2022b), the new results from the Drina—Ivanjica Unit added
a new constraint, which is about 20 Ma for the commence-
ment of the CW rotation (age of the Golija igneous rocks are
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20.6-20.2 Ma; Schefer et al. 2011). For the upper age limit,
18-17 Ma is proposed, based on the strain field and AMS
investigations of the Polumir pluton (U-Pb age; Schefer et al.
2011) from the Western Vardar Zone (Marton et al. 2022b).
The rotation could have been triggered by the rollback effect
of the Carpathian subduction, which also must have been
responsible for the opening of the Pannonian Basin (Horvath
1993; Fodor et al. 1999; Matenco & Radivojevi¢ 2012; Tolji¢
et al. 2013; Horvath et al. 2015; Marton et al. 2022b).
Paleomagnetic directions of the Upper Cretaceous sedi-
ments, which were studied from two basins far from the Golija
magmatic complex, are well-clustered after tilt correction.
In one, the Mokra Gora area, where the studied sediments are
pelagic limestones, the result of the tilt test (Enkin 2003b) is
positive (Table 4, Fig. 9A). For the other basin, near Zlatibor,
the test is indeterminate with the optimal untilting at 50 %
(Table 4, Fig. 9B), which can be attributed to the very weak
magnetization of the platform carbonates and the small diffe-
rences between the tilt angles of the beds. As the joint tilt test
for the two basins (Table 4, Fig. 9C) is very close to a positive
result, and the pre- and post-tilting declinations are very simi-
lar (D=15°; Table 4) we interpret this declination as indicating
a minor post-Early Cretaceous and pre-Miocene CCW rota-
tion of the Drina—Ivanjica Unit, subtracting the post-20 Ma
30° CW rotation. Somewhat larger, post-40 Ma CCW rotation
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Table 4: Overall mean paleomagnetic directions and overall mean paleomagnetic poles for the Drina—Ivanjica Unit. Key as for Table 3 for
the paleomagnetic directions, but N is the number of localities. Lat, Lon — geographic coordinates of the poles (WGS84); K and A95 — statistical
parameters for poles (Fisher 1953). Tilt-test classification is based on Enkin (2003b); reversal test classification is based on McFadden &
McElhinney (1990). Bold: tectonically meaningful direction * M 13 was excluded: Watkins (1973) cut-off. ** S19 was excluded: layers are in

tectonic relationship with the surroundings.

was postulated for the Central Vardar Zone (Marton et al.
2022b), based on the results of remagnetized Upper Creta-
ceous sediments. The mean paleolatitude fits with the expected
paleolatitude in a position between Africa and stable Europe
for this age (GAPWP, Torsvik et al. 2012), and the mean
paleodeclination to the observed declination pattern (Marton
et al. 2022b).

The Triassic—Jurassic cover strata of the Drina—Ivanjica
Unit, which were deposited before the ophiolite obduction, are
mostly situated in the Dinaric Ophiolite Belt (Dimitrijevi¢
1997; Vaskovi¢ & Matovi¢ 2010), forming the western part of
the Drina—Ivanjica Unit. The pre-Cretaceous sedimentary out-
crops are widespread; however, the numbers of the localities,
which are suitable for paleomagnetic investigation, are limited
due to the common occurrence of syn-sedimentary tectonics
and slumping. Eventually, seven localities were sampled and
six of them yielded well-defined paleomagnetic mean direc-
tions (Table 3). Layers from locality S19 were in tectonic
relationship with its surroundings, and the mean direction
of this locality is an outlier (Watkins 1973); therefore, S19
was excluded from the regional tectonic interpretation.
The remaining localities have normal polarity magnetizations
— four of them are well-clustered before tilt correction and one
(S18) fits this cluster after correction (Fig. 10). We tentatively
suggest that the remagnetization is connected to the ophiolite
obduction (Late Jurassic—earliest Cretaceous), which heated up
the underlying rocks (inverted P—T gradients, Karamata 1968).
The paleodeclination of the overall mean direction (Table 4)
is about 340°, which means a net CCW rotation of 20° with
respect of the present north. However, it can be interpreted

S . Geodynamic Fold/Tilt test; Paleomagnetic poles
Paleomagnetic directions . . i
interpretation reversal test based on localities
N D° Pk a9%° D¢ Ie° k  095° Optimal untilting 7 oy 0 g Agse
and classification
Miocene magmatites * 8 273 561 271 10.8 - - - - - - - - -
— 0,
Upper Cretaceous flysch 3 35.6 60.7 279 23.8 663 434 47 646 . 1.2 147'6 % - - - -
indeterminate
Miocene magmatites and post-20 Ma
remagnetized Upper 11 293 574 291 8.6 - - - - 30° CW reversal test: Rb ~ 67.4  119.7 18.0 11.1
Cretaceous flysch rotation
1 _ 1 0,
Cenomanian —Turonian 5 »c3 710 136 215 43 490 294 143 733£65.5% . _ _ _
Mokra Gora area positive
1 _ M 0,
Cenomanian —Turonian 43¢ 567 741 107 278 459 768 106 S15+200.7%
Zlatibor area indeterminate
Cenomanian — Turonian lrS(:taCtiCo;V 63.44343 %
Mokra Gora + Zlatibor 9 19.0 646 195 12.0 151 482 306 9.5 o 270 69.1 159.6 24.1 10.7
between 90 indeterminate
area
and 20 Ma
Trlgssw—Jurassm " 350 CCW
sedimentary rocks rotation 29.3+45.8 %
(S18: tilt corrected 5 3389 549 685 93 3044 520 272 149 . >0 70 70.2 2604 42.7 11.8
Lo between 150 negative
direction was used for and 90 Ma
both calculations)
N

Kopaonik area:
Oligocene magmatics
(32-30 Ma)
Lesic et al. 2019

Drina-lvanjica Unit:
Miocene magmatites (20.6-20.2 Ma),
remagnetized Cretaceous flysch

present study
/ I
Avala mountains: T
Oligocene magmatites (25—-23 Ma), [*
remagnetized Cretaceous carbonatesff + + + + + + + +
+
+

Marton et al. 2022b

wider Rudnik area:
Oligocene—Miocene magmatites (32—-20 Ma),
remagnetized Cretaceous sedimentary rocks
Lesic et al. 2019

Fig. 8. Comparison between the Miocene overall mean direction
of the Drina—Ivanjica Unit and the paleomagnetic directions of
the earlier studied areas of the Vardar Zone (Avala Mts. — Eastern
Vardar Zone; Kopaonik and Rudnik areas — Western Vardar Zone
according to division of Tolji¢ et al. 2019).

as a 50° CCW vertical axis rotation after 150 Ma and before
the Miocene, considering the post-20 Ma 30° CW rotation.
Part of this rotation must have taken place after the Late
Cretaceous, as a 15° CCW rotation of the Drina—Ivanjica
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Fig. 9. Mean directions of the Cenomanian—Turonian sedimentary rocks before (left side) and after (right side) tilt correction. A, Mokra Gora
area (gold symbols); B — Zlatibor area (blue symbols): indeterminate tilt-test is probably connected to the weaker magnetization and the small
dip differences; C — combined results. Overall mean directions are plotted as squares with the respective a95. Tilt test results (Enkin 2003b)
with syn-tilting diagrams are also shown in the right. Key as for Fig. 7.
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Fig. 10. Locality mean directions for Triassic—Jurassic sedimentary rocks of the Drina—Ivanjica Unit before (left side) and after (right side) tilt
correction. Overall mean direction is shown as blue squares with the respective a95. Post-tilting direction was used for locality S18 for both
overall mean direction calculations. Tilt test result (Enkin 2003b) with syn-tilting diagram is also shown in the middle. Key as for Fig. 7.

Unit between 90-20 Ma was interpreted for the Cenomanian—
Turonian results. The post-150 Ma CCW rotation of the
Drina—Ivanjica Unit is in line with the well-documented
CCW rotation of the Adriatic microplate (Marton et al. 2017
and references therein), supporting the postulated Adriatic
origin.

Conclusions

This paper presents the first paleomagnetic and AMS results,
as well as their tectonic interpretation from the Drina—Ivanjica
Unit of the Internal Dinarides. The results were obtained at
34 geographically distributed localities/sites (total of 358 drill
cores oriented in situ) from the following groups of rocks:
(1) Miocene Golija pluton and related extrusive igneous rocks,
(2) Upper Cretaceous flysch sequences, which were thermally
affected during the Miocene magmatic activity, (3) Upper
Cretaceous post-obduction carbonate rocks of the Drina—
Ivanjica Unit, and (4) Middle Triassic to Middle Jurassic lime-
stones and marls representing the pre-obduction cover of
the Drina—Ivanjica Unit.

The AMS measurements were practically confined to the
igneous rocks, due to the very weak positive or negative
susceptibilities in most of the studied sediments. The magnetic
fabrics of the extrusive igneous rocks are rather weak and
dominated by foliation. The Golija granodiorite is charac-
terised by a high degree of anisotropy and no preferred orien-
tation on the site level. This suggests that the pluton was

intruded in the absence of active strain, unlike the older
I-type and the younger S-type plutons of the Western Vardar
Zone.

The products of the magmatic activity and the Upper
Cretaceous flysch, which was clearly remagnetized during
Miocene magmatism, point to a 30° CW rotation which must
have taken place after 20 Ma. The angle and sense of the rota-
tion suggests coordinated movement of the Drina—Ivanjica
Unit with the adjacent Vardar Zone during the Miocene.
Results of the present study set a younger age constraint
(20 Ma) for the commencement of the CW rotation instead of
the previously suggested 23 Ma. The rotation could be con-
nected to the rollback effect of the Carpathian subduction,
which initiated the formation of the Pannonian basin as well.

The paleomagnetic results from the post-obduction Late
Cretaceous carbonates, which were sampled in two basins far
away from the Golija pluton, are interpreted in terms of about
15° CCW rotation between the Late Cretaceous and 20 Ma,
taking into consideration the 30° Miocene CW rotation.

The Triassic—Jurassic cover strata of the Drina—Ivanjica
Unit yielded post-tilting magnetizations. The magnetizations
were probably acquired during obduction of the ophiolites,
suggesting about a 150 Ma age of magnetization acquisition.
The overall mean direction indicates a total of 50° CCW
rotation of the Drina—Ivanjica Unit between 150 Ma and
the Miocene. This CCW rotation fits the paleomagnetically,
well-documented post-150 Ma CCW rotation of Adria, and
therefore supports the Adriatic affinity of the Drina—Ivanjica
Unit.
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