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Abstract: When considering data and parameters in hydrogeology, there are often questions of

uncertainty, vagueness, and imprecision in terms of the quantity of spatial distribution. To overcome

such problems, certain data may be subjectively expressed in the form of expert judgment, whereby a

heuristic approach and the use of fuzzy logic are required. In this way, decision-making criteria relating

to an optimal groundwater control system do not always have a numerical value. Groundwater control

scenarios (alternatives) are identified through hydrodynamic modeling of the aquifer, providing an

indication of their effectiveness. The paper develops a fuzzy-stochastic multi-criteria decision-making

model to deal with a topical problem: selection of the most suitable groundwater control system for an

open-cast mine. Both real numerical and linguistic variables are used to express the values of all criteria

that affect the final decision. In particular, it should be pointed out that the values of the criteria are

varied over a predefined time horizon. For mathematical calculations, fuzzy dynamic TOPSIS and the

stochastic diffusion process—geometric Brownian motion—were used. The proposed method is tested

in a case study: the selection of an optimal groundwater control system for an open-cast mine.

Keywords: expert judgment; linguistic variables; fuzzy dynamic TOPSIS; hydrogeology; groundwater

control system; open-cast mine; geometric Brownian motion

1. Introduction

This paper presents the development of a decision-making model for solving a highly complex

and topical problem, such as the selection of a suitable groundwater control system for an open-cast

mine. The main function of groundwater control systems is to decrease the groundwater level in order

to provide favorable conditions for efficient open-cast mining.

Using the results of previous hydrodynamic analyses, Polomčić & Bajić [1] discuss the design of

groundwater control systems and groundwater management scenarios (alternatives) for the Buvač

open-cast mine (Bosnia and Herzegovina) through to the projected cessation of mining (2024). In the

present paper, multi-criteria decision analysis is applied to select the optimal groundwater management

system under complex hydrogeological conditions, in a multiple criteria situation.

Multi-criteria decision analysis (MCDA) is a method that originates from the decision-making

theory. It is applied to problems that involve a finite number of decision options, which experts

evaluate and rank using the weights of a finite set of evaluation criteria [2]. The method is composed

of a series of techniques whose objective is to rank alternatives in the descending order of preference.

The best way scientists can express their opinions is, in fact, everyday verbal communication. It is

also a significant source of uncertainty, because the transfer of both information and knowledge is

coupled with various ambiguities and imprecisions. This is the reason why fuzzy logic is applied
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in MCDA, given that its essence is to handle knowledge that can be highly imprecise and expressed

verbally. A system is described using expert knowledge instead of differential equations. Knowledge is

conveyed in a natural way, by linguistic variables. An overview of case studies from various scientific

areas is presented in [3,4].

Many researchers in hydrogeology, and in particular the hydrogeology of the mineral deposits

industry, have applied different mathematical approaches to make optimal decisions. Zarghami &

Szidarovszky [5] used a fuzzy multi-criteria decision model and stochastic simulation for a water

resources management problem in a real case study. Srđević & Medeiros applied [6] the analytic

hierarchy process (AHP) to assess water management plans. Ghorbanzadeh et al. [7] used AHP to

optimize subsidence susceptibility mapping. Zhang et al. [8] applied the AHP method, integrated

interval two-stage stochastic programming (ITSP), and interval linear multi-objective programming

(IMOP) for water resources management policies in arid regions with inherent uncertainty. In the case

of optimal groundwater control systems, the decision-making criteria need not always be numerical

values. Where fuzzy logic is applied to multi-criteria decision-making, the criteria can be described

by linguistic variables represented through fuzzy membership and the system can be described

by expert judgment [9]. Bajić et al. [9] applied the fuzzy analytic hierarchy process (FAHP) and

VIKOR (Eng. multi-criteria optimization and compromise solution) method for selecting the optimal

groundwater control system under complex geological and hydrogeological conditions. Also, Sun et

al. [10] presented an interesting example of multidisciplinary design optimization of a tunnel boring

machine, under complex geological conditions. Golestanifar & Ahangari [11] applied fuzzy extent

analysis to select an optimal groundwater lowering technique for mines. The FAHP method is also

used to make decisions on groundwater in environmental impact assessment and hydro-environmental

management of groundwater resources [12–14], and the evaluation of groundwater potential and water

inrush risk [15,16]. For flood risk management, Levy [17] applied MCDA and the analytic network

process (ANP). The same methodology is used for land settlement susceptibility mapping [18,19].

Roozbahani et al. [20] applied the PROMETHEE method (Preference Ranking Organization Method for

Enrichment Evaluations) for decision-making problems in urban water supply management. The fuzzy

TOPSIS method (Technique for Order Preference by Similarity of Ideal Solution) is also widely used

in hydrogeology. Afshar et al. [21] applied the fuzzy TOPSIS method to select the best trade-offs of

critical issues in water resources management. Onu et al. [22] applied the fuzzy TOPSIS method to

rank sustainable water supply alternatives. Senent-Aparicio et al. [23] used this method to rank a

combination of climate models, in assessing the impact of climate change on headwaters.

Multi-criteria decision making is used for decision making analysis with dynamically changing

input data and criteria weight variation during a temporal decision process. The dynamic

multiple-criteria decision making methodology is applied in many different scientific fields, such as:

air traffic [24], automotive industry [25], construction industry [26], optimization theory in neural

science, psychology and system science [27], economics and marketing management [28,29], emergency

management [30], and risk analysis [31]. In the present paper, the fuzzy dynamic TOPSIS method is

proposed and tested in making an optimal decision about a groundwater control system. Four criteria

in which time is a factor are analyzed. Therefore, this is a dynamic multiple-criteria decision-making

problem, in which the ranking of the proposed alternatives changes over a defined time horizon.

The model was developed on the basis of ranking of proposed alternatives changing over a predefined

timeframe and it considers the variability of input parameters.

2. Methodology

This chapter presents the methodology used to develop the decision-making model. Also, the

fuzzy dynamic TOPSIS method is summarized. A fuzzy multi-criteria decision-making problem is

usually represented in the following matrix form:
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D̃ =
[

x̃i j

]

m×n
=





A/C C1 C2 . . . Cn

A1 x̃11 x̃12 . . . x̃1n

A2
...

Am

x̃21
...

x̃m1

x̃22 . . . x̃2n
...

. . .
...

x̃m2 . . . x̃mn





(1)

where A = {A1, A2, . . . , Ai}, i = 1, 2, . . . , m is the set of alternatives and C =
{

C1, C2, . . . , C j

}

, j = 1, 2, . . . , n

is the set of criteria. Here x̃i j is the fuzzy triangular number that represents the score of the i-th alternative

relative to the j-th criterion.

In the multi-criteria decision-making process, sets of scores obtained on different scales are

compared (i.e., each criterion has its own dimension). To make the comparison process much easier,

it is necessary to create dimensionless space of decision making. For that purpose, the following

normalization of the decision-making matrix is applied:

r̃i j =
x̃i j

∑m
i=1 x̃i j

=

(

ai j, bi j, ci j

)

∑m
i=1

(

ai j, bi j, ci j

) j = 1, 2, . . . , n (2)

and a normalized decision-making matrix, R̃ =
[

r̃i j

]

m×n
, is obtained.

The multi-criteria decision-making process is significantly influenced by the weights of the

criteria. The significant weight of each criterion can be estimated by subjective and objective methods.

Subjective methods rely on the expert knowledge of the decision maker, whereas objective methods

use mathematical models. Shannon’s entropy approach belongs to the group of objective methods

and it will be used here to arrive at the weight of each criterion. The entropy concept measures the

uncertainty of the input data in terms of probability [32,33]. The entropy measure of each criterion is

computed as follows:

ẽ j = −k

m∑

i=1

r̃i j·ln
(

r̃i j

)

(3)

where k = (ln( m))−1 is the constant which guarantees that 0 ≤ ẽ j ≤ 1. The divergence that indicates

the importance of the j-th criterion is:

d̃ j = 1− ẽ j (4)

The objective weight of the criterion, based on the entropy concept, is as follows:

w̃ j =
d̃ j

∑n
j=1 d̃ j

(5)

Note: If the criterion value equals zero, then it is adopted ln(0) = 0.

The elements of the normalized fuzzy decision matrix R̃ are multiplied by the objective criteria

weight w̃ j to obtain a fuzzy weighted decision-making matrix:

Ṽ =
[

ṽi j

]

m×n
=

[

r̃i jw̃i j

]

m×n
(6)

When experts are faced with a problem that involves the selection of the best alternative, the

technique called “technique for order ranking preference by similarity to an ideal solution” (TOPSIS)

can be used to assess alternatives with respect to a set of predefined criteria. This method has been

developed by Hwang and Yoon [34]. The concept is based on simultaneous measuring of the distance

of the alternative to the positive and negative ideal solutions. The positive ideal solution is that which

maximizes benefits and minimizes costs, whereas the negative ideal solution maximizes costs and

minimizes benefits [35]. Accordingly, the best solution is the alternative that has the minimum distance
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to the positive ideal solution and maximum distance to the negative ideal solution. In a real-world

decision-making environment, the score of the i-th alternative relative to the j-th criterion is very vague.

The score’s vagueness can be expressed by linguistic variables and appropriate fuzzy numbers. In that

case, classical TOPSIS becomes fuzzy TOPSIS.

Many different decision-making problems have been solved by applying fuzzy TOPSIS. Without

wishing to reduce the importance of any problem, the following is a brief literature survey. Many

authors have used the methodology [36,37] to manage vagueness and uncertainty. Chou et al. [38]

applied Fuzzy TOPSIS to assess human resources in science and technology. Solangi et al. [39] used

this method to select the optimal location of a wind power project. The same methodology has been

applied in flood hazard mapping [40], risk management of sustainable engineering projects [41], and

decision aiding related to urban development [42]. Chen [43] presented the selection of a system

analysis engineer for a software company. Chu [44] described a group-decision model for solving

a facility location selection problem. Problems relating to plant layout design have been solved by

classical and fuzzy approaches [45]. Gligorić and Gligorić [46] applied the fuzzy dynamic TOPSIS

method to select the appropriate mining technology for a surface clay mine. Vinodh et al. [47] applied

a combination of fuzzy-DEMATEL (decision making trial and evaluation laboratory), fuzzy-ANP and

fuzzy-TOPSIS to select the best concept for a car component.

Without loss of generality, only relevant steps of the fuzzy TOPSIS method are presented below.

According to the fuzzy weighted decision-making matrix (see Equation (6)), the fuzzy positive ideal

solution (Ã+) and the fuzzy negative ideal solution (Ã−) are defined as follows:

Ã+ =









max
︸︷︷︸

i=1,2,..,m

ṽi j

∣
∣
∣ j ∈ J





,





min
︸︷︷︸

i=1,2,..,m

ṽi j

∣
∣
∣ j ∈ J′









=
{

ṽ+
1

, ṽ+
2

, . . . , ṽ+n
}

(7)

Ã− =









min
︸︷︷︸

i=1,2,..,m

ṽi j

∣
∣
∣ j ∈ J





,





max
︸︷︷︸

i=1,2,..,m

ṽi j

∣
∣
∣ j ∈ J′









=
{

ṽ−1 , ṽ−2 , . . . , ṽ−n
}

(8)

where J is a subset composed of benefit criteria and J′ is a subset of cost criteria. The n-Euclidean

distance between each alternative to the fuzzy positive and fuzzy negative ideal solution is calculated

in the following way:

S̃+
i
=

√√√ n∑

j=1

(

ṽi j − ṽ+
j

)2

i = 1, 2, . . . , m (9)

S̃−i =

√√√ n∑

j=1

(

ṽi j − ṽ−
j

)2

i = 1, 2, . . . , m (10)

The relative closeness coefficient represents the distance of each alternative to the fuzzy positive

and fuzzy negative ideal solution simultaneously. It is calculated as follows:

Q̃i =
S̃−

i

S̃+
i
+ S̃−

i

i = 1, 2, . . . , m (11)

The alternative that has the highest defuzzified value of the relative closeness coefficient represents

the best alternative.

If there is only one criterion, with values changing over time, then the problem is of the dynamic

multiple-criteria decision-making type. Such a problem is expressed in the following matrix form:

D̃(t) =
∣
∣
∣x̃i j(t)

∣
∣
∣ i = 1, 2, . . . , m; j = 1, 2, . . . , n; t = 1, 2, . . . , T (12)



Symmetry 2019, 11, 705 5 of 16

Suppose that Q̃i(t), i = 1, 2, . . . , m; t = 1, 2, . . . , T is a set composed of relative closeness

coefficients realized at different times, and λ̃(t) =
(

λ̃(t1), λ̃(t2), . . . , λ̃(tT)
)

is a vector of the period

weights. The value of the aggregated overall relative closeness coefficient of the i-th alternative is

defined as [48]:

Q̃
ag

i
=

T∑

t=1

λ̃(t)·Q̃i(t) i = 1, 2, . . . , m (13)

where λ̃(t) ≥ 0,
T∑

t=1
λ̃(t) = 1. Generally, the vector of period weights can be given by the decision

maker’s subjective preference or expert’s knowledge. To avoid subjectivity in the estimation of λ̃(t), we

also apply the entropy method. Let W̃ =
[

w̃ jt

]

n×T
, w̃ jt ≥ 0,

n∑

j=1
w̃ jt = 1 be a matrix of criteria weights

over the time horizon. The vector of period weights λ̃(t) =
(

λ̃(t1), λ̃(t2), . . . , λ̃(tT)
)

is defined as:

λ̃(t) = d̃w(t)/
T∑

t=1

d̃w(t) (14)

where d̃w(t) = 1− ẽw(t) is the degree of divergence of the average weight information contained within

each time period, ẽw(t) = −kw

n∑

j=1
w̃ jt·ln

(

w̃ jt

)

is the entropy value of the weight information contained

in the criteria weight matrix W̃, kw = 1/ln(n) is a constant which guarantees that 0 ≤ ẽw(t) ≤ 1.

Overall ranking of alternatives is obtained according to the descending order of defuzzified Q̃
ag

i
,

that is, a larger defuzzified Q̃
ag

i
means that the alternative is better.

3. Test Site and Description of Alternatives and Criteria

An open-cast mine is a suitable test site because of the complexity of both hydrogeologic

conditions and the implementation of a proper groundwater control system. The Buvač limonite

mine in Bosnia and Herzegovina was selected as the study area (Figure 1a). Based on numerical

modeling, Polomčić & Bajić [1] discuss the design of groundwater control systems and describe

three groundwater management scenarios (alternatives) for the Buvač open-cast mine, through to

the projected cessation of mining operations (2024). They identify the groundwater control system

components and portray their features, spatial distribution, construction sequence, and effectiveness

of the entire system. The differences between the management scenarios originate from alluvial

groundwater control solutions and components of the dewatering system (type, number and function).

The configurations of all three alternatives included: eight drainage wells (blue dots in Figure 1) which

drain the alluvial aquifer; a drainage ditch in the alluvial aquifer; a cut-off wall (green line in Figure 1);

diverted river flow; and the locations, initial capacities, and lengths of operation of the drainage wells

whose primarily function is to dewater the ore body. Common to all three alternatives is the fact that

the groundwater level has to be a minimum of 15 m below the bench in the ore body. Based on the

above, the problem is composed of three alternatives and four criteria: technical criterion, energy

consumption, capital expenditure, and operating cost.

3.1. Alternative A1

In Alternative 1, the groundwater control system consists of 33 additional wells that tap the

alluvial aquifer north of the open-cast mine (yellow dot in Figure 1b), whose overall capacity is 107 L/s.

Plans called for the system to be commissioned on 1 January 2015.
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Figure 1. Study area (A) and dewatering systems: Alternative 1 (B). Alternative 2 (C), and Alternative

3 (D) (Bajić et al. [9]; modified).

3.2. Alternative A2

In Alternative 2, the groundwater control system consists of a cut-offwall in the alluvial aquifer,

(rather than the 33 drainage wells), which is approximately 2000 m long and about 20 m deep on

average (yellow line in Figure 1c). The cut-offwall was supposed to be completed on 1 January 2016.

3.3. Alternative A3

In Alternative 3, the groundwater control system is a combination of the above two scenarios

(Figure 1d). In the northwestern part of the site, where the open-cast mine is closest to the river,

a 1000 m long cut-offwall was assumed to be complete on 1 January 2016. Continuing from the wall,

13 drainage wells were assumed to have the same characteristics as in Scenario 1, but a total capacity

of 65 L/s. These wells were to be placed online on 1 January 2017.

3.4. Technical Criterion (C1)

The technical criterion refers to the selection of the groundwater control system components, their

advantages and disadvantages in terms of construction, and their performance relative to the local

hydrogeology. It is also related to the possibility of modifying the technical features of the groundwater

management system, or, in other words, shutting down a drainage well or changing its discharge

capacity by means of different types of pumps. This criterion needs to be maximized.

3.5. Energy Consumption (C2)

Energy consumption refers to a set of measures whose objective is to optimize electric power

consumption. Such measures should not affect the operation of the groundwater control system. They
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are contributors to energy security and consistent with environmental principles. The energy demand

of wells is high and that of cut-offwalls minimal. This criterion needs to be minimized.

3.6. Capital Expenditure (C3)

Capital expenditure refers to the overall cost of the groundwater control system components, their

characteristics, number, ancillary equipment, and unit cost. This criterion needs to be minimized.

3.7. Operating Costs (C4)

Operating costs (CO) are related to labor costs and the costs of repair or replacement of groundwater

control system components and equipment (periodic pump replacement or well rehabilitation),

and monitoring.

There are many uncertainties inherent in operating costs over time. The ability to quantify them

can significantly increase the reliability of the best alternative selection. The present paper applies a

stochastic diffusion process called geometric Brownian motion, to model the flow of operating costs. A

general Itô-Doob type stochastic differential equation takes the following form [49]:

dxt = ρ·(xt, t)dt + σ·(xt, t)·dWt, xt0 = x0 (15)

Here, t ≥ t0, Wt is the Brownian motion, and xt > 0; is the stochastic process. The following linear

Itô-Doob type stochastic differential equation is used to describe the flow of operating costs:

dCOt = ρ·COtdt + σ·COt·dWt (16)

where ρ is the drift, σ is the volatility and Wt is normalized Brownian motion. If the separation

technique is applied, then Equation (16) becomes:

dCOt

COt
= ρ·dt + σ·dWt (17)

Let’s take the integration of both sides:

∫

dCOt

COt
=

∫

(ρ·dt + σ·dWt)dt (18)

Obviously, the left side relates to the derivative of ln(COt). Applying the Itô calculus, we get the

following equation:

ln

(

dCOt

COt

)

=

(

ρ− σ
2

2

)

∆t + σ
√

∆tWt, Wt ∼ N(0, 1) (19)

Finally, the analytical solution to Equation (16) is the geometric Brownian motion given by the

following equation:

COt = COt−1·exp

{(

ρ− σ
2

2

)

∆t + N(0, 1)σ
√

∆t

}

(20)

Equation (20) describes an operating cost scenario involving spot costs COt. Let CO =

{COt, t = 0, 1, . . . , T} denote a cost scenario with spot costs COt, where COt is determined by Equation

(20). Figure 2 shows sample paths (s = 1, 2, ..., S) of the operating costs simulated using the above

equation S times. This criterion needs to be minimized.
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Figure 2. Simulated operating cost paths on an annual time scale.

4. Decision-Making Model Using Simulation

The model is based on the ranking of proposed alternatives changing over a predefined timeframe

and considers the variability of input parameters. By simulating a decision-making system, its action

is mimicked in order to measure its response (output) to different inputs. The advantage of simulation

is the possibility to replicate the evolution of a system as many times as necessary, under independent

conditions. Simulation makes it possible for analysts to describe the uncertainty of variables that affect

the ranking of projects at different times, depending on scenarios.

Criterion CO(t) has its own stochastic performance law described by geometric Brownian motion.

Simulation provides the costs for every year of the proposed projects (i.e., project cost time-series).

Definition 1. Let CO = [coit]m×T be a project cost matrix obtained for s = 1, where each row represents the cost

path of the i-th project over the time horizon. The space of cost simulation is defined as follows:

COs = [[coit]m×T]s =





[[coit]m×T]1
[[coit]m×T]2
[[coit]m×T]3

...

[[coit]m×T]s





, s = 1, 2, . . . , S (21)

Definition 2. According to the previous definition, let Ỹ =
[

[D̃mn]
]

1×T
be the dynamic decision-making matrix

obtained for s = 1, where each element represents a decision-making matrix for every year. The space of the

dynamic decision-making matrix simulation is defined as follows:

Ỹs =
[

[D̃mn]
]

s×t
=





[

[D̃mn]
]

11

[

[D̃mn]
]

12
. . .

[

[D̃mn]
]

1t[

[D̃mn]
]

21

[

[D̃mn]
]

22
. . .

[

[D̃mn]
]

2t
...

[

[D̃mn]
]

s1

...
[

[D̃mn]
]

s2

. . .

. . .

...
[

[D̃mn]
]

st





, s = 1, . . . , S; t = 1, . . . , T (22)

Definition 3. Let Ai = {A1, A2, . . . , Am} be a set of proposed alternatives (projects) and Q
ag

i
=

{

Q
ag

1
, Q

ag

2
, .., Q

ag
m

}

a set of their defuzzified aggregated overall relative closeness values obtained for s = 1.

Alternative Ai, which has the greatest aggregated overall relative closeness value, is the most suitable alternative

and rank z = 1 is assigned to it (for example: A2 = sup
{

Q
ag

i=1,2,...,m

}

→ z = 1 ). The remaining alternatives are

ranked accordingly, in descending order of aggregated overall relative closeness values, and values 2, 3, . . . , m
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are assigned to them, respectively. If we take into consideration the number of simulations, then there are S rank

orders of the given alternatives. The space of rank order simulation is defined as follows:

Zs =





A1 A2 · · · Am

z11 z12 · · · z1m

z21 z22 · · · z2m
...

...
. . .

...

zs1 zs2 · · · zsm





, s = 1, 2, . . . , S (23)

The main goal of our model was to determine the best alternative with respect to the given criteria.

Definition 4. Let Z = [zsm]S×m be a rank order matrix obtained by S simulations, and Ω = {Ω1, Ω2, . . . , Ωm} =
{

S∑

s=1
zs1,

S∑

s=1
zs2, . . . ,

S∑

s=1
zsm

}

a set composed of column sums. The best alternative is defined as follows:

Abest = in f {Ω} (24)

and takes the rank of 1. The final ranking (FR) of the alternatives is formed according to the ascending

order of the Ω set components.

FR =
{
in f {Ω}, in f {Ωm−1}, in f {Ωm−2}, . . .

}
= {1, 2, 3, . . . , m} (25)

5. Results and Discussion

As previously mentioned, the site on which the methodology was tested is the Buvač open-cast

mine. Three groundwater control system alternatives and four criteria were analyzed in four-time

slices (t = 1, t = 2, t = 3 and t = 4). The technical criterion was expressed through the AHPFAHP

scale presented by Chang [50], Deng [51] and Tolga et al. [52]. The energy consumption criterion

was given in kWh, while capital expenditure and operating costs were shown in euros. The input

parameters for project evaluation are given in Table 1. Accordingly, based on Equations (15)–(20),

Table 1 shows the spot value, drift and cost volatility parameters of Criterion 4 (operating costs). A total

of 500 mathematical simulations were performed. The calculations were made in a special-purpose

application based on Microsoft Excel.

Table 1. Input parameters.

Alternative Criterion Value

A1

C1 → max (FAHP Scale) (t = 1) = (1, 1, 1); (t = 2) = (1.5, 2, 2.5); (t = 3) = (0.666,1,1.5); (t = 4) = (0.666, 1, 1.5)

C2 → min (×106 kWh) (t = 1) = 1.445; (t = 2) = 5.913; (t = 3) = 6.044; (t = 4) = 5.913

C3 → min (×106 Euro) (t = 1) = 0.1193; (t = 2) = 1.8351; (t = 3) = 0.2410; (t = 4) = 0.0000

C4 → min (×106 Euro) spot value 0.30; drift 0.0291; cost volatility rate 0.0799

A2

C1 → max (FAHP Scale) (t = 1) = (1, 1, 1); (t = 2) = (0.666, 1, 1.5); (t = 3) = (3.5, 4, 4.5); (t = 4) = (3.5, 4, 4.5)

C2 → min (×106 kWh) (t = 1) = 1.445; (t = 2) = 1.576; (t = 3) = 1.078; (t = 4) = 1.578

C3 → min (×106 Euro) (t = 1) = 0.1193; (t = 2) = 0.7094; (t = 3) = 9.4490; (t = 4) = 0.0000

C4 → min (×106 Euro) spot value 0.30; drift 0.0014; cost volatility rate 0.0258

A3

C1 → max (FAHP Scale) (t = 1) = (1, 1, 1); (t = 2) = (0.666, 1, 1.5); (t = 3) = (2, 3, 3.5); (t = 4) = (2.5, 3, 3.5)

C2 → min (×106 kWh) (t = 1) = 1.445; (t = 2) = 1.576; (t = 3) = 3.416; (t = 4) = 3.285

C3 → min (×106 Euro) (t = 1) = 0.1193; (t = 2) = 0.7094; (t = 3) = 7.8848; (t = 4) = 0.0000

C4 → min (×106 Euro) spot value 0.30; drift 0,0142; cost volatility rate 0.0512

Time slice 4 years

Interval 1 year

Sample 500 simulations

One possible state of the C4 criterion (operating cost) over time is presented in Figure 3, while

evaluations of information in different time episodes are shown in Tables 2–5. The operating costs



Symmetry 2019, 11, 705 10 of 16

of Alternatives 1 and 3 vary over time considerably, given that the groundwater control system is

comprised of 33 wells (Alternative 1) or 13 wells and a small impervious screen (Alternative 3). This

means that systems made up of drainage wells are the most expensive option, because of the need

for periodic pump replacement and well rehabilitation. This is not the case with the cut-off wall

(Alternative 2). The operating costs of a groundwater control system comprised of a cut-offwall reflect

solely maintenance labor.Symmetry 2019, 11, x FOR PEER REVIEW 10 of 16 
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Figure 3. A simulation of operating cost paths.

Table 2. Information for t = 1.

Criterion C1 C2 C3 C4

Alternative a1 b1 c1

A1 1 1 1 1.445 0.1194 0.3352
A2 1 1 1 1.445 0.1194 0.3031
A3 1 1 1 1.445 0.1194 0.296

Table 3. Information for t = 2.

Criterion C1 C2 C3 C4

Alternative a1 b1 c1

A1 1.5 2 2.5 5.913 1.8351 0.3213
A2 0.666 1 1.5 1.577 0.7095 0.3063
A3 0.666 1 1.5 1.577 0.7095 0.3012

Table 4. Information for t = 3.

Criterion C1 C2 C3 C4

Alternative a1 b1 c1

A1 0.666 1 1.5 6.044 0.2410 0.2975
A2 3.5 4 4.5 1.078 9.4490 0.3102
A3 2 3 3.5 3.416 7.8849 0.3132

Table 5. Information for t = 4.

Criterion C1 C2 C3 C4

Alternative a1 b1 c1

A1 0.666 1 1.5 5.913 0 0.307
A2 3.5 4 4.5 1.5786 0 0.32
A3 2.5 3 3.5 3.285 0 0.3366
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Table 6 shows the calculated weights of the criteria in each time episode, taking into account the

scores of the four criteria (technical criterion, energy consumption, capital expenditure and operating

costs) by alternative (Tables 1–4), based on Equations (1)–(6) from Section 2.

Table 6. Weights of criteria in time interval.

Time t1 t2 t3 t4

a1 b1 c1 a2 b2 c2 a3 b3 c3 a4 b4 c4

C1 0 0 0 0.56693 0.15412 0.36484 0.27322 0.19051 0.29578 0.49894 0.49565 0.67533
C2 0 0 0 0.38014 0.55332 0.33111 0.24358 0.27796 0.2479 0.39354 0.50151 0.43985
C3 0 0 0 0.20031 0.29157 0.17448 0.46546 0.53115 0.4737 0 0 0
C4 1 1 1 0.00068 0.00099 0.0059 0.00033 0.00038 0.00034 0.00022 0.00285 0.0025

Based on Equations (7)–(11), the relative coefficient of closeness of the alternatives to the ideal

solution in each time episode was calculated and is shown in Table 7.

Table 7. Relative closeness coefficient in time interval.

Time t1 t2 t3 t4

Alternative a1 b1 c1 a2 b2 c2 a3 b3 c3 a4 b4 c4

A1 0 0 0 0.56693 0.15412 0.36484 0.27322 0.19051 0.29578 0.49894 0.49565 0.67533
A2 0.81921 0.81921 0.81921 0.38014 0.55332 0.33111 0.24358 0.27796 0.2479 0.39354 0.50151 0.43985
A3 1 1 1 0.20031 0.29157 0.17448 0.46546 0.53115 0.4737 0.12313 0.1741 0.32331

The performance ranking of alternatives in each time episode is shown in Table 8 and Figure 4.

Applying the fuzzy TOPSIS method, the alternative that has the highest defuzzified value of the

relative closeness coefficient is the optimal solution. For the first and second time intervals, the optimal

solution is Alternative 3. In the third-time interval, the optimal solution is Alternative 1 and in the

fourth-time interval Alternative 2.

Table 8. Ranking in time interval.

Time t1 t2 t3 t4

Alternative DC Rank DC Rank DC Rank DC Rank

A1 0 3 0.33761 3 0.60837 1 0.18191 3
A2 0.81921 2 0.62429 2 0.38298 2 0.72725 1
A3 1 1 0.62429 1 0.31661 3 0.51349 2
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Figure 4. Ranking of alternatives over time.

Further, Table 9 shows the weight vector λ̃(t) =
(

λ̃(t1), λ̃(t2), λ̃(t3), λ̃(t4)
)

obtained using Equation

(14) and applying the proposed methodology.
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Table 9. Weight vector in time interval.

Time t1 t2 t3 t4

a1 b1 c1 a2 b2 c2 a3 b3 c3 a4 b4 c4

λ(t) 0.49541 0.48782 0.50520 0.13216 0.14230 0.12515 0.11764 0.13231 0.11793 0.23542 0.23774 0.27149

The value of the aggregated overall relative closeness coefficient (AORC)—Q̃
ag

i
, i = 1, 2, 3 and

the rank of the i-th alternative in one simulation are shown in Table 10, along with the calculated

values of the DAORC (defuzzified aggregated overall relative closeness coefficient). According to the

methodology, the larger the defuzzified Q̃
ag

i
, the better the alternative. Consequently, Alternative 3 is

the optimal solution.

Table 10. Aggregated overall relative closeness coefficient and rank (s = 1).

Alternative
AORC DAORC Rank

a1 b1 c1

A1 0.11657 0.10308 0.19474 0.13813 3
A2 0.53704 0.63622 0.66978 0.61435 2
A3 0.60760 0.69233 0.71725 0.67239 1

Five hundred simulations were conducted using the proposed decision-making model (Section 4).

A set of rankings was generated after the simulations (Table 11). As mentioned in Section 4, the

alternatives were ultimately ranked according to the ascending order of the “Ω” set components. Based

on the simulation results and Equation (25), the final ranking of the proposed alternatives is: A1(Ω3 =

1093), A2(Ω1 = 870) and A3(Ω2 = 1037). The lowest total score (sum) represented the optimal solution,

meaning that Alternative 2 most often came first in the 500 simulations over time.

Table 11. Simulations.

Simulation
Rank

A1 A2 A3

1 1 3 2
2 1 2 3
3 3 1 2
4 1 3 2
5 3 2 1
6 2 3 1
7 1 2 3
8 3 1 2
9 1 3 2

10 3 1 2
...

...
...

...
495 1 3 2
496 1 2 3
497 3 2 1
498 1 2 3
499 3 1 2
500 3 1 2

Sum 1093 870 1037

6. Conclusions

The paper proposed a dynamic multi-criteria decision-making model with real numbers and

triangular fuzzy numbers, to deal with vagueness and uncertain information. The applied multi-criteria

fuzzy-stochastic diffusion decision-making approach (fuzzy dynamic TOPSIS and geometric Brownian
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motion) is aimed at selecting the optimal alternatives, where different criteria generally have different

representations, such as a real number and a fuzzy number.

The proposed concept was applied and tested on a groundwater management system in open-cast

mining operations. The problem is highly complex because it is dynamic and involves continuous

changes as the mining operations constantly expand. Thus, an efficient and flexible groundwater

control system is required. Such problems indicate that the proposed criteria changeover a defined

time horizon, so the dynamic multi-criteria decision-making method was tested.

The research implemented fuzzy multiple-criteria decision analysis in hydrogeology. It supported

decision-making in connection with a problem that had several potential solutions and involved

conflicting criteria. The optimal solution was selected after all the set criteria were assessed. The research

highlights the need for an interdisciplinary approach, linking hydrogeology, hydrodynamics and

groundwater management with other scientific disciplines, in addition to those mentioned in the paper:

with fuzzy logic (mathematics and psychology) and multi-criteria decision analysis (decision theory).

Experiments showed that the proposed decision-making approach was able to select an

optimal alternative effectively. Although the aim of the example provided here was to select an

optimal groundwater control system, the proposed model can be applied in many different fields.

The multi-criteria fuzzy-stochastic diffusion model presented for groundwater management can be

used to solve hydrogeological and civil engineering problems related to the design and selection of

optimal systems for water supply, irrigation, remediation of groundwater and soil pollution, and

protection of urban areas, industrial zones, riparian lands, drained areas, and agglomerations.
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