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The power plant owner is interested to know in advance the quality of coal to be
burnt which should meet maximal efficiency of power plant and the environmental
regulations. There is the need to control and to predict the quality of coal at the
mine site to meet sulfur emission requirements. Coal quality control between the
mine site and the utility plant is a complex problem owing to the variable nature of
coal properties (heating value, sulfur, ash), even within the same coal seam. Due to
the fluctuation of the coal quality, mine planning and coal homogenization are in
fact an optimization problem under uncertain conditions. To deal with these issues
a stochastic optimization model is developed for an illustrative coal homogeniza-
tion problem. Mining block grades from an optimized mining schedule are used to
simulate any given homogenization process in stockpiles throughout the mine's life.
Sulfur content is treated as lognormally distributed random variable. The objec-
tives of the model include minimizing the expected sulfur content and standard de-
viation in sulfur content. The methodology was illustrated using the case study on
Kolubara surface coal mine.

Key words: stochastic modelling, mine planning, homogenization, coal quality
control, sulfur content

Introduction

According to the International Energy Agency [1] forecast for the next decades, coal

will retain its important role in power generation in Europe and worldwide. The availability of

the worldwide coal resources and their price stability are the main reasons for this trend. Coal is

the most important fuel in the generation of electricity, accounting for 65% of the power pro-

duced in Serbia [2]. In the past, because of the regulated business environment in which utilities

operated, coal was viewed as a necessary evil and was always treated as a “pass through” cost.

Although the quality of coal impacts boiler operations and subsequent power produced and

emissions, utilities had no economic interest in monitoring or managing coal quality.

It is preferred that feeds the plants coals whose properties, especially that of calorific

value, conform to the power plant design and whose sulfur content meets the sulfur emission re-

quirement after combustion. It is generally difficult to obtain coal of desired qualities from one
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source because of the variable nature of coal properties. Homogenization of coals from different

working benches within the single mine or even more mines are therefore becoming mandatory

not only from an economic standpoint but also from the necessity of meeting emission require-

ments.

At the surface mine, coal is extracted from various active working benches and then

transported directly to the power plants or to stockyards. Because coal properties can vary con-

siderably, the quality of run of mine (ROM) coal composite will depend on both the quality and

quantity of coal mined from each active bench. If it is desired to control the ROM coal quality,

the rate of coal production from each active bucket wheel excavator (BWE) should be regulated.

The effect of this approach is to blend the coal through the sequence of mining. Such an ap-

proach requires a prior knowledge of the coal quality of planned mining blocks.

Coal homogenization is one of mostly used options for optimisation of sulfur emis-

sions from desulfurization power plants [2]. However, decisions about coal homogenization

must deal with uncertainty and variability in coal properties, and with the effect of off-design

coal characteristics on power plant performance and cost. According to Shih and Frey [3] sulfur

and ash content and heating value are considered as normally distributed random variables. The

objectives of a model to optimize operation of a plant must include minimizing: (1) the expected

(mean) costs of coal blending and (2) the variance of coal blending costs. The cost objective

function includes coal purchasing cost, ash disposal cost, sulfur removal cost, and fuel switch-

ing costs. Chance constraints include several risk measures, such as the probability of exceeding

the sulfur emission standard.

Homogenization piles are frequently used in order to reduce variability and ensure

coal stock. In this context, the most important factors, in respect to pile building can be cited as

the type of layer disposition, number of layers and added mass. The last variable can signifi-

cantly reduce pile variability when a large material amount is homogenized, and variability

among the lots decreases [4, 5]. The deposition sequence of the material also is able to affect

grade predictability of each pile, requiring a more careful mining advance forecast. Often, this

scheduling is represented by a vector of grades to coal blocks that will be mined along a given

activity time, and geostatistical techniques are used to predict them.

Some previous studies involving blending and homogenization piles and geostatistical

simulations are described [6, 7]. US power stations have experienced reduction in SOx emis-

sions, by up to 20%, by homogenizing coal feeds to power plants [8].

Kriging technique is a very good estimator, but it is not adequate to predict the uncer-

tainty of a process. According to [9], on contrary to kriging, geostatistical simulation methods

aim to reproduce in situ variability, and the spatial continuity of the input data set. Models used

in this way, aim to replicate the spatial structure of a data set as a whole rather than provide reli-

able local estimates of an attribute at particular locations.

The stochastic simulated model honors values at the sampled points and it reproduces

the same dispersion characteristics of the original data set (i. e. the mean, variance and

covariance or variogram). It is possible to address questions referring to the dispersion of the

grades during operational mine planning or stocking process, since the dispersion characteris-

tics of the original data are maintained.

Coal quality control at the mine planning phase

Mine planning is based on reliable estimates of coal grades of future mining blocks.

Consequently, in order to develop any coal quality control strategy, the mine should have the ca-
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pability to predict both the quality and the variability of the pertinent coal parameters with some

degree of certainty. Coal quality cannot be controlled without some information about possible

qualities of future mining blocks. The control of coal quality at the mine phase is usually

planned from in-situ coal parameters which are estimated from coal samples. These samples are

commonly used to generate maps of in-situ coal parameters. With such maps, it is possible to

know in advance the effect of mining from different benches of the surface mine, i. e., whether

or not the required quantity and quality of coal can be met during the planning period. Mine

planning is divided into four categories: long-term, medium-term, short-term, and operational

planning [10].

The primary objective of long-term mine planning is to develop mining sequences

which will define the economic limit of the mine. The medium-term planning is concerned with

a time span from one to about ten years. It provides information necessary for forecasting future

production and cost. There is practical limitation in controlling coal quality during the long and

medium-term planning, owing to limited information about grades. The short-term planning

contains all activities which are planned between one and twelve months period. The short range

plan defines resources and labor requirements, future production and cost. More distinct infor-

mation about the nature of mineralization and equipment performance is required in short range

than medium range planning.

Operational planning is concerned with daily or weekly requirements of the mine.

Proper operational planning must conform to short term mine plans as well as satisfying many

practical details that are unique to day to day operations. Grade control problems are usually in-

corporated in the operational planning provided that the necessary detail information is known

in advance. The most common planning objective is maximization of tonnage, while meeting

the requirements of physical and geological constraints, policies and mining methods. The basic

data required in any operational planning are coal quality and capacity. Difficulties in optimum

production schedule are caused by variability of grade and inability to accurately predict grades

of smaller mining units. Therefore, detailed information on coal properties is essential for reli-

able operational mine planning [8].

Generally two types of grade variability exist in the coal chemical composition (fig. 1):

– long-term variability as measured by trends of monthly or longer duration, and

– operational variability is generally measured by short period inter-train variability around

the long-term trend and is little affected by the long-term variability.

The objectives of the operational mine planning model considered in this study are

two-fold. First, the coal quality requirements for a planning period must be met, subject to some

physical and geological constraints, policies

and mining methods. Secondly, the quantity re-

quirements must ensure sufficient coal produc-

tion.

This model, in general, is based on predicted

information about the in-situ quality of the coal

deposit. Consequently, production scheduling

for the purpose of controlling coal quality, e. g.,

sulfur, have to be based on the predicted data of

the contemplated mining benches. The model

uses zero-one programming formulation to se-

lect potential working benches in surface coal
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Figure 1. Long-term and operational variability
of SO2 grade



mine on the basis of predicted information.The standard optimisation technique widely used in

many industrial applications is the linear and integer programming 12 . Models involve optimi-

zation of a quantity usually referred to as the objective function subject to a set of constraints

which define the feasibility. In the operational mine scheduling, the decision to be made is

which working benches should be mined. A decision variable (1) represents the i-th working

bench and takes on a value of either zero (0) or one (1):

X
i

i

th

th
i

if working bench

if working bench is not m
�

1

0 ined

�
�
�

(1)

with Xi denoting the i-th working coal bench whose predicted sulfur and tonnage values for a

planned period, are sulfur (Si,%) and coal production (Ti, tons), respectively, the objective func-

tion of an integer programming formulation of reducing total sulfur content is expressed by eq.

(2):

Minimize X S Ti
n

i i i�� 1 , where n is the total number of coal working benches (2)

The restriction with regard to both quality and tonnage requirements are formulated in

the following way. First, run of mine composite sulfur (3) must not exceed maximum allowed,

Smax [%], during a shift (or period).
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Also, all working bucket wheel excavators (BWE's) must mine coal during a period (or

shift). This constraint (4) which guarantees a minimum production during a period, assumes that

during any period, the available BWE's do not exceed the total number of potential working coal

benches:

X BWE
i

n

i
�
� �

1

(4)

In practice, the surface coal mine is divided into a number of mining phases, which are

mined bench by bench, each bench represented by a horizontal layer of blocks within the given

mining phase and having the same elevation. The mathematical formulation of the scheduling

procedure of mining blocs in terms of binary decision variables describing in which period the

particular block is extracted and what is its destination (either directly to the power plant or to

processing plant and stockyard) is quite straightforward. But the hypothetical optimal block ex-

traction sequence may be completely impractical due to the technological requirements for the

mining equipment (BWE's) access and relocation.

Coal homogenization at the stockyard phase

Homogenization is stocking the ROM coal in layers, in their correct proportions, in the

same stockpile, then reclaiming across the full face. In any blending pile the attenuation on vari-

ability depends on the equipment used and the way coal is stocked and reclaimed [6].

The main factors influencing blending efficiency are the pile size or its mass and the

number of layers used to build pile. The aim in the homogenization process is to narrow down

the standard deviation of the normal distribution. A measure of the quality of the homogenizing

process is defined by the homogenizing efficiency (HE). In simplified terms, and subject to cer-
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tain statistical assumptions, the resultant homogenizing effect is calculated as the variability of

the incoming coal on pile (e. g. S %) and the variability of the outgoing coal from pile [11]:

HE n n� �
s

s

in

out

where is the number of layers05. , (5)

By grouping exploitation mining blocks and forming a pile, the average grade of this

pile is closer to the planned mean if compared to the grades of each individual block which com-

prise the pile. This phenomenon of variance reduction is well known and it is referred to as the

volume-variance relationship [4, 5].

Prior to designing the homogenization stockyard it is necessary to know the sulfur

content of coal that will form the pile. These grades come from a geological block model mined

according to a sequence determined by an optimal mine scheduling. These block models how-

ever are obtained via classical interpolation algorithms, such as ordinary kriging. In these situa-

tions, the uncertainty associated with the interpolated value cannot be properly incorporated [9].

As a result of the so-called smoothing effect, the variance of the estimated values is smaller than

that of the original data. There are also limitations associated with the use of the kriging variance

as a measure of uncertainty [12].

The methodology suggested in this study quantifies the variability of the homogeniza-

tion pile by using multiple equally probable realizations derived from a lognormally simulated

sulfur distribution. Models used in this way, aim to replicate the spatial structure of a data set as

a whole rather than provide reliable local estimates of an attribute at particular locations.

The stocking model

From operational mine plan the coal benches mined are forming each windrow stock-

yard pile. These multiple mining benches are an initial blending attempt as distinct coals are

combined to ensure sulfur regularity minimum.

Software solution takes as input all needed design parameters, so very detailed analy-

ses are possible. First input parameter is number of layers in base, from which software calcu-

lates total number of layers. There are n layers in the base. One can observe that there is an n-1

layer in the next row, but also that rhombus, and corner shaped layers are paired. So, in all

non-base rows of layers, there is:

( ) ( ) ( )
( )

n n n
n n

� 	 � 	 � 	 	 �
�

1 2 3 1
1

2
�

pairs of square and corner shaped layers. Then total number of all base and non-base rows is:

n
n n

n n n n	
�

� 	 � �2
1

2
2 2

( )
(6)

The stockpile geometry is given with: length, width, height and slope are also input pa-

rameters. The software solution give posibility to define stockpile geometry (shape) with length,

width, height and slope as input parameters, that provides easy adjustment for other, different

stockpile size and shape. Another feature of interface is visualization of cross section for differ-

ent stacking granularity, for selected pile and position within pile, fig. 2. The shadings of layer's

cross-sections in fig. 2 are corresponding to the percentage of sulfur.
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The reclaiming model

Developed reclaiming model determines the

tonnage of coal to be loaded from stockyard

piles by reclaimer, so that the total sulfur con-

tent of the reclaimed coal is minimised, while

retaing the its heating value within requred

range.

Bed blending assumes that each reclaim

slice (fig. 3) includes equal amounts of material

from all layers of material stacked. This is good

approximation for some bed-blending systems,

but it is not a good approximation for most min-

eral stockpiling systems. Therefore, we de-

scribe prediction of the performance of stock-

piling systems for which reclaim slices include

unequal amounts of material from the layers of

material stacked, fig. 3.

Quality of the reclaimed material is calcu-

lated as the weighted average of pieces of the

layers that are taken from the bed. In this calcu-

lation, each piece's quality is weighted by its

volume. More precisely, let Xij be the average

grade of the material in layer i such that its dis-

tance from the beginning of the layer is in the

range [(j – 1)d, jd] where d is the cut depth of the reclaimed. Now, the layers can be described by

the matrix:
X X X

X X X

X X X

n

n

m m mn

11 12 1

21 22 2

1 2

�

�

� � � �

�

where m is the number of stocked layers, l – the length of the bed, and n = l/d. The volume of the

material reclaimed from layer i in cut j is denoted by vij. The average grade of material reclaimed

in whole cut j is then computed by the formula:

X

v X

v
j

ij ij
i

ij
i

�
�

�
(7)

When necessary, calculation of volumes includes Monte Carlo integration for calcula-

tion of intersection area of arbitrary polygons when the polygons are too complex. We describe

the Monte Carlo integration method we used. Let f be a function, and IV(f) the definite integral of

that function:

I f X X X f X X X fV
a

b

a

b

n
a

b

n

n

n

( ) ( , , , ) ( )� 
 
 
 �d d d x1 2 1 2

1

1

2

2

� �
�

dx
�

l

 (8)

on the region of integration:
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Figure 3. Reclaiming slices from windrow pile



V a b a b a bn n� � � �[ , ] [ , ] [ , ]1 1 2 2 � (9)

Monte Carlo approximation of this definite integral is calculated using:

A f
V

N
fn i

i

( )
| |

( )� �
�
x (10)

where |V| is the volume of the integration region, and
�
x i are the points in the random sample

taken from the integration region. The value An(f) converges to true value IV(f) as n goes to infin-

ity. The variance of this estimate is calculated as:

Var A f V
Var f

n
n[ ( )] | |

( )
� 2 (11)

Since the variation of an integral able function is bounded, the variance of the estimate

decreases as 1/(n)1/2.

Now, let Cp(X) be the characteristic function of the polygon P. For each point, this

function gives value 1 if that point is in the polygon and value 0 if the point is out of the polygon.

This function can be calculated by taking an arbitrary ray (half-line) from the point that inter-

sects the sides of the polygon. If the number of intersections is even, then the value of the func-

tion is 0, and if it is odd, the value of the function is 1. By plugging this function in the general

formula for Monte Carlo integration, one can approximate the area of the polygon. In order to

calculate the intersection of the polygons P1, P2,..., Pn, one should use the characteristic function

of the intersection which is the product of characteristic functions of polygons, namely,

C X C X C XP P Pn1 2
( ) ( )... ( ). Nevertheless, in most cases, the volume can be calculated exactly –

without approximation.

Simulation methodology of coal quality control

The primary objective of the simulation is to determine a sequence of mining tasks to

deliver the required coal quality and quantity to the power plants in the short-to-medium term.

Simulation algorithms currently used in mining are more appropriate than ordinary kriging to

deal with matters related to data variability. Mine production plans, scheduling, and blending

strategies require knowledge of the dispersion of relevant geological attributes [8, 14]. Fluctua-

tions in mining engineering and geochemical attributes of interest are also relevant for mine de-

sign and production scheduling. For example, mapping the probability of grades exceeding a

limiting threshold within different areas of a deposit can warn of possible fluctuations in the

grades, with direct implications on the scheduled mining plan.

Stochastic simulation model is used to generate multiple, equally probable scenarios

of the phenomenon; each scenario reproduces the value of the sampled data, their spatial conti-

nuity, represented by lognormal model, and the histogram of the distribution, replicating the

natural variability of the sulfur. These scenarios provide a set of possible values for each mining

block, which form a homogenization pile. So, we generate many values for the average of blend-

ing piles studied as there are various possible scenarios generated by the simulation algorithm

used.

Generation of dataset for this case study was performed in statistical package Rsim

[15], with rlnorm function which can generate random numbers whose distribution is

lognormal, with arguments: the number of random numbers, the mean and standard deviation.

The following code was used:
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The steps involved in the study can be summarized as:

(1) Build a consistent geological database using drill holes and use this data to develop MinexTM

coal quality seam models to map the variability associated with the in situ qualities.

Generation of multiple equally probable models via Rsim.

(2) After its construction, a mini block model is used for mining planning and scheduling. For a

given mining schedule and multiple simulated quality models, compose the average content

values for each pile system considering the number of blocks forming each chosen stockpile

and their respective qualities. Each generated pile is based on a scheduled sequence of

blocks forming the pile.

(3) Plot the standard deviation from stockyard pile qualities in relation to planned average for

various pile sizes (masses). Check the size of the pile, which leads to an acceptable range of

content variation. Repeat (2) and (3) for each of several simulated models of sulfur contents

to map the influence of in situ qualities uncertainty on the interpile quality fluctuation.

Case study

The case study uses data from a coal deposit located in Kolubara surface mine, fig. 4.

The operating mining plan uses for grade estimation the original geological dataset. The local

geology of mine includes 3 coal seams interbedded with waste material such as siltstones, sand-

stones, shales, and other sedimentary rocks. Available samples include 1118 heating values and

632 sulfur values for analysis distributed in the coal seams mentioned. The samples considered

for this study were separated by coal seams. Samples were collected and analyzed at different

length or support as each coal seam has thickness variations from point to point.

Stevanovi}, D. R., et al.: Application of Stochastic Models for Mine Planning ...

1368 THERMAL SCIENCE: Year 2014, Vol. 18, No. 4, pp. 1361-1372

Figure 4. Field to be mined and the strip sequence by years



The Kolubara surface mine used for simulation is bounded by a rectangle, and mine se-

quencing is developed using the coal within the rectangle (fig. 4). The box cut is a planned start

at the northern extreme of the area due to several technical operational reasons including an ade-

quate location for the topsoil provisional deposit from the first cut. The area to be mined over the

life of the mine was divided into 28 strips, 200 m wide. The deposit used to illustrate the method-

ology has 3 mineable coal seams, each with its own coal quality and own average thickness. To

compose the sulfur grade value for mining blocks, it is necessary to combine multiple sulfur

grade values from each different coal seam and multiple working benches.

Analyses has shown in Kolubara surface

coal mine some parts of deposit with high con-

tent of organic sulfur, over 2% (see fig. 7). Ad-

justed on share of 95 percentiles content of sul-

fur is over 1%, althought content in most of

parts of the deposit is under 0.4%. The space

distribution of sulfur required the homogeniza-

tion of coal according to sulfur as a leading pa-

rameter. Slave parameter for homogenization is

coal heating value. The integral model for coal

quality control is developed and consists of

three sub-models: operational mine scheduling

model, stocking model and reclaiming model,

fig. 5.

According simulated daily or shift mine plan

each BWE has working bench position and pro-

duction parameters. Mass and quality control

will be done by on-line devices and

weightmeters on main belt conveyor. If coal

quality has required values coal is transported

directly to thermal power plant, if not coal is

transported on stockyard. Stacking and reclaim-

ing will be controled by its models.

To proceed with the pile simulator, a mining

sequence associated to the mine plan is re-

quired. Mean of sulfur content at each stock-

yard pile directly depends on the coal block ex-

traction schedule. This sequence is determined

by a planned mine advance. Before starting the stocking and the analysis on the variability re-

duction with the increase of the number of stockyard pile layers, it is necessary to understand all

variability sources influencing the pile homogenization system of the case study, namely:

– variability of the sulfur grades from each coal seam and bench11, bench12, … benchij.

– variability of the sulfur grades, which feed the stockyard (pile combining coal from several

mining benches or mines)

– variability among grades in homogenization piles (variability depending on number of

layers).

In this study we use a pile of 350.000 t equivalent to new designed stockyard at the

mine corresponding to 84 mining blocks from the model. Piles were designed as 48 m wide and
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same length according to the variable number of layers. To illustrate the procedure, the blocks

selected corresponded to the first year of production with a total of 4895 blocks. Each block has

a grade obtained by Rsim, which, of course, differs among them and is different from the global

mean calculated for the first year. By grouping various blocks and forming a pile, the average

grade of this pile is closer to the global annual mean when compared to the grades of each indi-

vidual block which comprise the pile, fig. 6.

In this case study, we analyzed the performance of the homogenization method for

various blending bed sizes. As illustration we present the variability of input and output data for

the cases of 25, 100, and 169 layers in each bed. Gray circles represent the input data, horizontal

axis corresponding to the cumulative mass of the coal stacked up until the moment, and vertical

axis corresponding to the percentage of organic sulfur. Black circles represent the percentage of

organic sulfur after the homogenization. One can notice that the output consists of several seg-

ments with rather small intersegment variation. Each segment corresponds to one reclaiming cy-

cle. The mean values of segments vary inevitably as the trend changes in the input data.

This explains why the grades in the reclaimed coal from the piles led to a variance re-

duction in the grades feeding the power plants as compared to the grade variability that would be

obtained from a mining block by block scheme feeding the power plant. A few other aspects

controlling the variance of the average grades among stockpiles are:

– the larger the size of stockpile the smaller will be the variance of the average grade of each

pile around the planned mean grade, and

– as a consequence of the stockpile size an extremely large pile hypothetically perfectly

homogenized formed by all blocks mined during planned period would lead to a zero

variance around the mean grade of this period (in theory).

However, the larger the pile the better will be the homogenizing process; and from an

operational point of wiew the problems tend to grow in difficultly as the size of the stockyard

equipment involved increases. The adequate pile size is the minimum size which will deliver

coal to the plant with grades varying within a pre-determined and acceptable grade interval.

Given all information necessary from operational mine planning and scheduling to the

stockyard simulation model, i. e. simulated block values and mining sequence, the average sul-

fur values of the homogenization piles can be obtained. The variability among piles was deter-

Stevanovi}, D. R., et al.: Application of Stochastic Models for Mine Planning ...

1370 THERMAL SCIENCE: Year 2014, Vol. 18, No. 4, pp. 1361-1372

Figure 6. Simulation results for input/output variability of organic sulfur on pile



mined for variable number of layers in the same pile size. It was taken into consideration that the

mass of each mined coal block is equivalent to BWE capacity on each coal seam.

Figure 7 shows that the simulated model adequately reproduced the histogram of the

declustered original data. Left part of the figure is plotted the histogram of the original samples

and in the right part the generated histogram by the algorithm of sequential lognormal simula-

tion for one geological domain studied.

Given the validated simulated block model and the planned mining sequence, it is pos-

sible to calculate a set of equally probable values for the sulfur average that each blending pile

can take. A pile is formed by a set of blocks from different mine faces from multiple benches.

The scenarios generated by sequential Gaussian simulation would provide a group of possible

values to the blocks that form a homogenization pile. Consequently, the average organic sulfur

content calculated for each pile can assume as many values as simulated scenarios.

The algorithm developed considers the number of layers in piles and the contribution

that each seam from each block adds to the total mass of the pile. When the number of layers and

mass (size) of the pile is reached the algorithm stops, takes the weighted average of the qualities

from the blocks included in this specific pile, and starts building the next pile.

Average standard deviations for the organic sulfur from various pile sizes is given in fig.

8. The figure illustrates the results obtained for the

intrapile standard deviation for each number of lay-

ers tested. Note, the curves were plotted for all simu-

lation runs constructing piles of 350.000 t and re-

peated 32 times (one for each simulated number of

layers). It is noticed that after 100 layers the standard

deviation stabilizes. The curves with the fitted

(thick), minimum, average and maximum (dashed)

standard deviations vs. the number of layers were

highlighted. Horizontal axis refers to the number of

layers. Vertical axis refers to the standard deviation.

An exponential curve was fitted to these experimen-

tal points. The model derived for the standard devia-

tion of organic sulfur versus number of layers is

shown.
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Figure 7. Histograms for sulfur original data (left) and (d) to simulated values of sulfur (right)

Figure 8. Average standard deviation for
variable pile sizes



Conclusions

This paper reviewed homogenization methods used in stockyards and proposed a

methodology to generate equally probable models based on maps of sulfur content within a coal

deposit in Kolubara surface mine. These models allow assessing the uncertainty associated with

the grade content in the ROM coal supplied to the power plant. As the size (mass) of the pile in-

creased, the quality fluctuations reduced allowing the decision maker the choice of selecting a

proper pile size to meet an acceptable level of variability. The optimal size must be defined tak-

ing into account capital and operational costs. The key message of stemming from the results in

this paper is that the simulation model provides a useful decision support tool to compare opera-

tional mine scheduling and stockyard piles policies for controlling coal quality. According to

the model, it is possible to reduce the variability of the grades exponentially as the mass of the

pile increases.
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