Stratigraphy revision of Upper Badenian of Rakovica stream near Belgrade (Central Paratethys, Serbia)

GORDANA JOVANOVIC1, SEJFUDIN VRABAC2 & STJEPAN CORIC3

Abstract. Belgrade area is a region of high paleobiodiversity, being ranked among the best known in Serbia. The prominent position among a number of Middle Miocene (Badenian) fossiliferous sites in the vicinity of Belgrade (southern Pannonian Basin, Central Paratethys) are occupied with sediments of Rakovica stream, also known as "Rakovica sands". Here, the integrated evidence based on new fossil findings of calcareous nannoplankton, foraminifera and molluscs assemblages, allows the stratigraphic revision of the clastic facies of the Rakovica succession. Based on the studies of lithological composition, high paleodiversity molluscs fauna and local palaeogeographical setting, it can be concluded with reasonable certainty that deposits of Rakovica stream entitled "Rakovica sand" represents a sandstone of the shallow marine (littoral) environment during Lower Badenian time. Large benthic foraminifera Ammonia viennensis (d’ORBIGNY), and Borelis haueri (d’ORBIGNY) as well as zone marker N5 Sphaenolithus heteromorphus DeFLANDRE correspond to this biostratigraphic level. During the late Early Miocene and Middle Miocene (Badenian), the climate in the Central Paratethys was mainly subtropical. This is supported at its southern margin by the presence of thermophilous mollusc taxa, as well as the Conidae, Strombidae, Xenophoridae, Pleurotomidae, Turridae, Muricidae, etc. Consequently, the investigated deposit can be ascribed to the early Badenian which biostratigraphically corresponds to the NN5 nannozone by correlation with successions in theirs type-areas to the Central Paratethys, and defines precisely the time of the marine transgression in this area.

Key words: Stratigraphy, Middle Miocene (Badenian), nannoplankton, foraminifera, molluscs, Rakovica stream (Belgrade).

Апстракт. Околина Београда је регион високог палеобиодиверзитета који се сврстава међу најпознатије у Србији. Истакнуто место у бројним средњомиоценским (баденским) фосилним налазиштима у близини Београда (вјугин обод Панонског басена, Централни Паратетис) заузимају седименти у Раковичком потоку, такозвани "Раковички пе-скови". Овде обједињени докази засновани на новим фосилним налазима заједица кречњачког нанопланктона, фораминифера и мекушаца омо-гнувају стратиграфску ревизију кластичних фација из Раковице. На основу проучавања литолошког састава, високог палеодиверзитета фау-
Introduction

The shallow marine deposits are famous for a long time for their highly diverse and excellently preserved foraminifers and mollusc assemblages. In Serbia, the largest spatial distribution of Badenian sediments exposed on the surface can be found in Belgrade and its vicinity, where they have been best studied due to the rich mollusc fauna. Also, the bryozoans, sponges, corals, ostracods, along with the crabs and fish remains are present. Since the first discovery of fossils fauna at Rakovica stream (Žujović, 1886; Pavlović, 1890) and later on, this site have been the subject of interest of many researchers (Luković, 1922; Petrović, 1962; Eremija, 1977; Ganić et al., 2016, etc.). The chronostratigraphical framework of the sedimentary succession from Rakovica stream (Upper Badenian age, Ammonia beccarii Zone) was based on studies of the foraminifera assemblages (Petrović, 1962; 1985), however, these important microfauna collections are not available. As a consequence, it often happens that many localities are assumed to belong to the Upper Badenian age (Jovanović, 2018), pointing to the need to reassess the age of some classical Badenian localities. Later, Rundić et al. (2019) published a summary review of several Miocene sites near Belgrade, but they did not add new stratigraphic records for so-called “Rakovica sand”.

For the southern margin of Central Paratethys, some independent age constraints were established by working in the last decade (Čorić et al., 2009; Pezelj et al., 2013; Sant et al., 2018; Jovanović et al., 2019a; Jovanović et al., 2019a; Mandić et al., 2019). These regions of the Pannonian basin were flooded later than the northern and western regions during the early Badenian (Čorić et al., 2009; Sant et al., 2017; Jovanović, 2018). However, the chronostratigraphic correlations of marine Middle Miocene deposits of the Serbian Neogene are still considered problematic. The facies distribution, stratigraphy, and tectonic structure of the Belgrade area which comprises early and middle Miocene sediments have not been studied in great detail. The precise chronological analysis was largely improved for the several sites in Serbia (Sant et al., 2018; Mandić et al., 2019), but chronology of the oldest units of the Belgrade area are still largely speculative. The outcropping rocks exposed on the Rakovica valley are part of the Upper Badenian with most authors (Ganić et al., 2016, Mandić et al., 2019, Rundić et al., 2019). Recently, the latest discovery in Serbia (Jovanović et al., 2019a) modified previous biostratigraphical results of some localities and indicated the necessity of stratigraphic revision of Rakovica and some other localities in the region.

In order to check the stratigraphic position of sediments from the Rakovica stream, several samples have been analysed in respect to nannoplankton, foraminifers, and molluscs. The research was based on these fossil assemblages in order to revise the
Upper Badenian deposits of Rakovica stream, and in order to provide a thorough scientific background for future study. New research clarified the stratigraphic position of the deposits of the so-called “Rakovica sand”. Micropaleontological and macropaleontological studies on the outcropping rocks exposed on the Rakovica valley showed the existence of a rich fauna, foraminifera and molluscs being the most important component of assembly of the fossil invertebrate. The combination of biostratigraphic analyses based on studies of some rare calcareous nannoplankton, foraminifera and molluscs assemblages, allows the revision of the clastic facies of the Rakovica succession. The studied outcrop is located on the left bank of Rakovica stream, on the southern flanks of Torlak Hill near Belgrade (Fig. 1).

Methods and materials

New bulk samples were taken in 2018 for analyses of fossil materials. Authors have collected stratigraphically and taxonomically important microfossils and macrofossils. A total of 12 samples for the analysis were analysed, collected from two outcrops and from one well. Also, old collections of the Natural History Museum in Belgrade, comprising 3000 specimens from the Rakovica deposits, were investigated. For stratigraphic revision of these deposits and for explaining the real vertical ranges of studied fossil assemblages, we used calcareous nannoplankton, benthic foraminifera and some termophilic molluscs, in particular those considered of stratigraphic importance to the Badenian. Sediment samples were processed by using standard micropaleontological and palaeontological methods of preparation technique. A total of 3 samples for the analysis of nannoplankton assemblages were prepared partly at the Vienna Smear slides, following standard procedure described by Perch-Nielsen (1985).

For the foraminifera and small mollusc extraction, 9 samples were prepared and washed at the laboratory and allowed to dry. Laboratory methods were employed for disintegrating soft sandstone using hydrogen peroxide. Samples were washed and the foraminifera and molluscs were recovered from the over a 0.1 mm fraction-sieve and picked under the microscope. The stratigraphical analysis of the nannoplankton zonation is based on Martini (1971), while the foraminifera zonation is based on Grill (1943). The photos of the molluscs were made with PANASONIC DMC-FZ50.

The preservation of the most foraminifera and molluscs specimens is quite good. Collected materials are stored in the collections of Natural History Museum in Belgrade (Serbia). The collectors include: Petar Pavlović, at the end of the 19th century, Petar...
STEVANOVIĆ around the mid-20th century, as well as the authors of this paper. As old Museum documentation does not contain all information on the location of some fossils, on the basis of the sediment stored on the fossils, we tried to identify the locality where they came from. The part of studied specimens of foraminifera are housed in the University of Tuzla (Bosnia and Herzegovina), while the samples of nanoplankton assemblages are stored in the collection of the Geological Survey of Austria in Vienna.

Geological setting

In the Middle Miocene (Badenian) the investigated area was located in the southeastern margin of the Pannonian Basin (Central Paratethys). The deposition of marine sediments during the Early Badenian of Central Serbia resulted from the transgression of the Central Paratethys Sea, which initiated the development of several basins, subbasins and bays with a corresponding sedimentation (ANDELKOVIĆ et al., 1989). In that time, the surrounding of Belgrade was a complex network of shallow marine basins. The Slovenian Trans-Tethyan corridor probably functioned as the connecting sea strait with Mediterranean Sea, according to BISTRIČIĆ & JENKO (1985). Connections are recorded also between the Pannonian and the Transylvanian basins, through the Mureș passageway and Fâget Basin in Transylvania (Romania), (CHIRA & MĂRUNTEANU, 1999; CHAIX et al., 2018), (Fig. 2B).

Most of the Belgrade area is covered by mid-Miocene sediments, lying transgressively over well-formed paleo-relief. The Miocene deposition in the Belgrade area begins with continental alluvial and lacustrine sedimentation, which occurred during the Early Miocene time and at the beginning of the Early Badenian, before the first sea transgression. The Belgrade basin is filled with sediments composed of conglomerates, marls, clays, sand, sandstones and limestones of different thickness at different sites, because tectonic movements separated these rocks into distinct blocks (PETKOVIĆ, 1912) lifted or plunged, during the Neoalpine tectonic events (MAROVIĆ et al., 2007; TOLJić et al., 2016). Paleogeography, tectonic movements and connections with other basins and sub-basins across the gulf or open-water channels (ANDELKOVIĆ et al. 1989; MATENČO & RADIVOJEVIĆ, 2012; JOVANOVIĆ, 2018) were the main factors influencing the diversity of molluscs in Serbia during the Middle Miocene (Badenian), which resulted in the formation of different facies with diverse fauna.

High diversity and excellent preservation of fossil assemblages are mentioned from a large number of Serbian localities, especially molluscs. The age of these deposits should be considered mainly of Middle Miocene (Badenian) which comprises three parts: Early Badenian (Lagenidae Zone), Middle Badenian (Spirorutilus carinatus Zone), and Late Badenian. The location of the studied succession (yellow star).

Fig. 2. A. Geological map of the Rakovica area with marked position of the studied area, after the maps: 1:100 000 of Serbia, sheet Pančevo (according to IVKOVIĆ et al. (1966)), and the map 1:100 000 of Belgrade (according to MARKOVIĆ et al. (1985), united and simplified); B. The map of Badenian sea of Central Paratethys (according to KOVIĆ et al. (2017); CHAIX et al. (2018), modified, showing the location of the studied succession (yellow star)).
denian (Ammonia beccarii and Elphidium crispum Zone) (PeTROVIć, 1962, 1985). According to HARZ-HAUSER et al. (2018), the Badenian stage can be correlated with the entire Langhian stage and the lower part of the Serravallian stage of the Standard Global Chronostratigraphic Scale of GRADSTEIN et al. (2012). During the Early Badenian, the first marine ingress reached Central Serbia area (EREMIJA, 1977; JOVANOVIć, 2018; SANT et al., 2018; MANDIC et al., 2019). On the terrains of the center of Belgrade and its surrounding, like in the Vienna basin, a very pronounced facies differentiation is recorded, when the Early Badenian sea-level rise covered older deposits in Rakovica area (LUKOVIć, 1922). Obviously, each part of Belgrade basin such as the center of Belgrade, followed by Višnjica, Leštane, Veliki Mokri Lug, Kneževac, Rakovica in the vicinity of Belgrade, had specific development in terms of facies distribution depending on paleorelief configuration and the tectonic reorganisations in the region. During the Early Badenian, when the sea transgression reaches its biggest extent, from the geotectonic point of view, the Rakovica stream belongs to the western border of Belgrade basin.

Results

The biostratigraphic analysis is based on the Museum collections and new field research, along with collected materials. The fauna originate from several sites, here described under the names: Rakovica stream section, Rakovica stream - old locality situated at a very short distance (about 100 m), and well cores belonging to the estate of Mr. Šujica. Some specimens from the Petar Stevanović collection originates from other localities: Clavatula schreiberisi (Hoernes) from Rakovica town and Aporrhais dactylifera (Boettger) from Jelen Hill.

Rakovica stream section

The described section of Rakovica stream, with a maximum thickness of 3 m, consists of yellowish and grey, fine-grained, poorly cemented sandstone and irregularly distributed hard yellowish sandstone lenses. The sediments are composed of a single relatively uniform deposit. A lower part is mainly dominated by the yellow sandstone, Fig. 3 (A a, B a) whereas the central part shows intermixing of grey and yellowish colored sandstone with hard sandstone lenses, Fig. 3 (A b). The contact surfaces between sediments of different color are uneven, Fig. 3 (B).

In its upper part, they are sometimes replaced by yellowish sandstone with hard sandstone lenses. The latest 1.5 m thick unit, Fig. 3 (A c, C), passing into thin and hard layer cemented Leitha sandstone towards top (Fig. 3 d), with poorly preserved nanofossils and well preserved Ascidian spiculae, has been observed. Both are dominated by quartz grains, while the cement is calcite. On their southern side, laterally, two thin wedge-shaped of the grey sandstone layers are exposed (Fig 3 e). Fossils foraminifera come from both yellowish and grey samples, Fig. 3 (A a, b), while fossil molluscs come from three samples, Fig. 3 (A a, b, c).

Yellowish sandstone

Calcereous nanofossils have low abundance and diversity because very shallow sandstones of the Rakovica stream are not very favorable to provide abundant and rich associations of nanofossils. The most analysed samples from the yellow sandstone were barren in calcareous nanofossils. The rarity of nanofossils made it difficult to establish a biostratigraphic framework. Nevertheless, in two specimens, the few identified species are rather informative and show that NN5 zone of the Middle Miocene is present in the sampled succession. The first manifestation of nannoplankton is noted at the top of section Rakovica stream, Fig. 3 (A d), where assemblages mainly consist of Braarudosphaera bigelowii (GRAN & BRAAURD, 1935) DEFLANDRE, 1947; Coccolithus pelagicus (WALLICH, 1877) SCHILLER, 1930; Coronosphaera mediterranea (LOHMANN, 1902) GAARDER, in GAARDER & HEIMDAL, 1977; Cyclicargolithus floridanus (ROTIL & HAY, in HAY et al., 1967) BURKY, 1971; Helicosphaera carteri (WALLICH, 1877) KAMPTNER, 1954; Micrantholithus vesper DEFLANDRE, 1950; Micrantholithus sp., Pontosphaera multipora (KAMPTNER, 1948 ex DEFLANDRE in DEFLANDRE & FERT, 1954).

Stratigraphically very important species Sphenolithus heteromorphus Deflandre, 1953 is absent from the samples of section Rakovica stream, however the occurrences of Sphenolithus heteromorphus Deflandre, 1953 in the sample from an old collection of Museum enabled the attribution into NN5 (nannoplankton zonation of Martini, 1971). The nannofossil assemblage is composed of Sphenolithus moriformis (Brönniman & Stradner, 1960) Brumlette & Wilcoxon, 1967 and Syracosphaera pulchra Lohmann, 1902 and some species of the reworked nannofossils from Cretaceous deposits: Micula staurophora (Gardet, 1955) Stradner, 1963; Vatznaueria barnesiae (Black in Black & Barnes, 1959) Perch-Nielsen, 1968). The age of these deposits corresponds to the zone of calcareous nannoplankton zone NN5 (nannoplankton zonation of Martini, 1971 was used). The zone is dated Middle Miocene based on the presence of benthic forms, and corresponds to the M5 zone of Berggren et al. (1995), on the regional scale (Paratethys).

Foraminifers are unequally distributed in the yellowish sediment and almost exclusively represented by benthic forms, only two planktonic forms of genus Orbulina were found. Foraminifers are more numerous and diverse than those of the sample of grey sandstone. The following foraminifera were de-
Ammonia viennensis (d’ORBIGNY, 1846), Elphidium crispum (LINNAEUS, 1758), Borelis haueri (d’ORBIGNY, 1846), Borelis melo melo (FICHTEL & MOLL), Quinqueloculina sp., Ammonia viennensis (d’ORBIGNY), Orbulina suturalis BRÖNIMANN.

The mollusc assemblages were already known in the 19th century, when ŽUJOVIĆ (1886) and PAVLOVIĆ (1890) made the list of mollusc species from the Rakovica stream. However, the majority of identified molluscs have a wide chronostratigraphic distribution, making it difficult to divide the Badenian, using them as a basis. Current investigation of the fossil assemblages and recent morphological studies (ATA-NACKOVIĆ, 1985; BALIJK, 2006; HARZHAUSER & KRONENBERG, 2013; HARZHAUSER & LANDAU, 2016; KOVÁCS & VIGÁN, 2014; KOVÁCS & BALÁZS, 2015; KOVÁCS, 2018; LA PERNÁ et al., 2017; LANDAU et al., 2013; MANGANELLI et al., 2004; NÉGRI & CORSELLI, 2016; POPO et al., 2014; STUDENCKA, 1986; STUDENCKA et al., 1998), led to a significant increase in the number of mollusc species (Figs. 5, 6, 7). Our results show approximately 150 mollusc species occurring in the studied section. However, our estimates of paleobiodiversity are still incomplete as yet and much work remains to be done. Gastropods are dominating. The following taxa are identified: Dentalium sp., Athleta ficulina LAMARCK, 1811, Persististrombus inflexus (EICHWALD, 1830), Semicassis laevigata (DEFRANCE, 1817), Babylonia eburnoides (MATHERON, 1843), Lautoconus sp., Varioconus pelagicus (BROCHI, 1814), Phasmoconus fuscocingulatus (HÖRNEs, 1856), Lautoconus kovacsi HARZHAUSER & LANDAU, 2016, Plagiocoonus extensus (HÖRNEs, 1856), Jujubinus (Strigosella) vexans (BOETTGER, 1907), Paroxystelle orientale (COSSMANN & PEYROT, 1917), Caecum (Caecum) pseudangulata BOETTGER, 1907, Truncatella subcylindrica (LINNAEUS, 1767), Nassarius serraticosta (HÖRNEs, 1852), Micoloripes dentatus (DEFRANCE, 1823), Bittium reticulatum (DA COSTA, 1778), Granulolabium bicinctum (BROCHI, 1814), Pyramistonia sp., Megacardita hoernesi LA PERNÁ, MARTÍN & HARZHAUSER, 2017; Discors spondyloides (HAUER, 1847), Flabellipecten besserer (ANDRZEJOWSKI, 1830), Europicardium multicostatum (BROCHI, 1814), Pirenella sp., Rissoina (Rissoina) pusilla (BROCHI, 1814), Modiolula phaseolina (PHILIPPI, 1844), Acteocina lajonkaireana (DE BASTEROT, 1825), Hydrobia sp., etc.

The grey sandstone

The grey sandstone contains only foraminifera fauna and mollusc shells. Nannoplankton is absent. Foraminifers are represented almost exclusively by benthic forms while the planktonic forms are scarce, only one specimen of Orbulina have been recorded. The following foraminifera were determined: Ammonia viennensis (d’ORBIGNY, 1846), Elphidium crispum (LINNAEUS, 1758), Borelis haueri (d’ORBIGNY, 1846), Dendritina haueri (d’ORBIGNY, 1846), Quinqueloculina sp. and Orbulina suturalis BRÖNIMANN, 1951. (Fig. 4 A). Among molluscs, the following species are identified: Antalis vulgaris (DA COSTA, 1778); Antalis cf. mutabilis (HÖRNEs & AUINGER, 1879); Varioconus pelagicus (BROCHI); Kallo-
Fig. 5. Detailed view of molluscs assemblage; Scale bar 0,5cm (Fig. 5a, b) and 1cm (Fig. 5, c–t): a, b, Clavatula schreibersi (HOERNES); c, d, Persistis trombusflexus (EICHWALD); e, f, Plagiocoonus extensus (HOERNES); g, h, Aporrhais dactyloides (BOETTINGER); i, Persistis trombus cf. lapugyensis (SACCO); j, k, Amaldaglandiformi sp.; l, m, Cathymorulaexilis sp.; n, Serratina sp.; o, p, Pyramistonia sp.; q, Discorsspondyloides sp.; r, Atrina pectinata (BROCH); s, Streptochetusornatus sp.; t, Azorinuschamasolen sp.
Fig. 6. Detailed view of molluscs assemblage; Scale bar 0.5cm (Fig. 6 a) and 1cm (Fig. 6 b-u).

- **a**, Cardites partschi (MÜNSTER in GOLDFUSS);
- **b**, Megacardita hoernesi LA PERNA, MANDIC & HARZHAUSER;
- **c, d**, Semicassislaevigata sp.;
- **e, f**, Xenopohora deshayesi MICHELOTTI;
- **g, h**, Xenophora sp.;
- **i, j**, Vitularia linguabovis (BASTEROT);
- **k, l**, Lautoconus subaristratus (PEREIRADA COSTA, 1866);
- **m, n**, Babylonia eburnoides (MATHERON);
- **o, p**, Zonarina phyletica (SCHILDER);
- **q, r**, Kalloconus ponderoaustriacus (SACCO);
- **s**, Phasmoconus cf. schroeckingeri (HÖRNES & AUINGER);
- **t, u**, Varicococus sp.

conus letkesensis HARZHAUSER & LANDAU, 2016; *Babylonia eburnoides* (MATHERON, 1843); *Athleta ficulina* (LAMARCK, 1811); *Zonarina phyletica* (SCHILDER); *Oligodia spirata* (BROCCHI, 1814); *Cathymorula exilis* (HÖRNES, 1856);
Fig. 7. Detailed view of molluscs assemblage; Scale bar 1cm. a, b, Persistis trombusexbonellii (SACCO); c, d, Lautoconus ponderosus (BROCCHI); e, Acanthocardia sp.; f, g, Acanthocardia paucioastata (Sowerby); h, Pectenaduncus sp.; i, Flabellipten besseri (ANDRZEJOWSKI); j, k, Lautoconus kovacsi HARZHAUSER & LANDAU; l, m, Varioconus pelagicus (BROCCHI); n, Glycymeris pilosa (LINNAEUS); o, p, Kalloconus letkesensis HARZHAUSER & LANDAU; q, r, Athletaficulina sp.; s, t, Phasmoconus fuscocingulatus (HÖRNE).
Finella perpusilla (Grateloup, 1827); Odostomia sp.; Ocinebrina sp.; Crepidula sp.; Pyramidella sp.; Potamides disjunctus (Sowerby, 1831); Alvana ocelli (d’Orbigny, 1852); Gibborisso varicosa (Basterot, 1825); Paroxyzstele orientale (Cossman & Peyrot, 1917); Retusa umbilicata (Montagu, 1803); Trivia cf. longitesta (BeerBistricky, 1958); Gibbula angulata (Eichwald, 1829); Flabellipecten besseri Andrejewski, 1931; Pecten adunicus Eichwald, 1930; Venus nux Gmelin, 1791; Glycymeris (Glycymeris) deshayesi (Mayer, 1868); Glycymeris sp.; Microloripes dentatus (Defrance, 1823), etc.

PERSISTISFROBBUS EXMONELLIS (SACCO, 1893); Persitistrobus infslexus (Eichwald, 1830); Zonarina phyletica (Schiilder, 1923); Bablynula eburnoides (Matheron, 1843); Varioconus sp.; Phaenocoon fusocingulatus (Hörnes, 1851); Paroxyzstele orientale (Cossman & Peyrot, 1917); Flabellipecten besseri Andrejewski, 1931; Anadara sp.; Polinices redepntus (Michelotti, 1847), etc.

Well of the estate of Mr. Šujica

In the West, meaning in Topčider river area, sedimentation took place in a shallow marine environment, and lagoonal environment was formed, resulting in deposition of coal-bearing clay. At a depth of 12 m, blue clay with coal and fossils were recovered from core well of Mr. Šujica’s estate (Stevanović & StepIonic, 1939; Stevanovic, 1970). This fauna probably belongs to the Upper Badenian because it contains sarmatoid forms. Additionally, Sarmatian deposits are situated above these sediments. Also, termophilic taxa such Conidae Fleming, 1822; Strombidae Raphael鞘, 1815; Muricidae Raphael鞘, 1815; Cypraeidae, etc., are missing. Among foraminifera Dendritina haueri d’Orbigny, planispiral porcelaneous species Spiroolina austriaca d’Orbigny, Quinqueloculina sp., Pseudotriloculina consobrina (d’Orbigny) and Ammonia viennensis (d’Orbigny) are identified. Acanthocardia paucicostata (Sowerby, 1841), Acanthocardia turonica (Mayer, 1861), Arca rollei Hörnes, 1864, Tellina donacina Linnaeus, Modiolus sp., Microloripes tofuardini (Deshayes, 1850), Crepidula cochlear Basterot, 1825, Calyp trea chinesis (Linnaeus, 1758), Venus sp., Ringicula minor (Grateloup, 1838). About 500 m south, on the left bank of Topčider River, in another well, similar fauna was identified: Anadara diluvii (Lamarck, 1805), Cubitostrea digitalina (Eichwald, 1830), Nassarius edlaueri (BeerBistricky, 1958); Granulolabium nodosopcatum (Hörnes, 1856) G. rubininosus (Eichwald, 1853), Venus sp. (Stevanovic & Stepanovic, 1939).

Discussion and Interpretation

In Serbia and some other regions of Central Paratethys, the temporal span and boundaries of the
Badenian regional stage remain unclear. Generally, in Paratethys area, other biostratigraphic problems were noticed (KOVAČ et al., 2018). In recent works, Badenian transgression is well documented from Serbia (SANT et al., 2018; JOVANOVIĆ et al., 2019a; MANDIC et al., 2019; RUNDIC et al., 2019), but the base of the Badenian has not yet been precisely defined. The intense efforts directed at resolving stratigraphic problems have not yet been matched with the latest researches of Badenian sediment of Central Paratethys. As pointed out by JOVANOVIĆ et al. (2019a), a biostratigraphic revision is required for some Badenian localities. In order to check the stratigraphic position of sediments from the Rakovica stream, several samples have been analysed in respect to nannoplankton, foraminifers and molluscs. The existing information of the Middle Miocene calcareous nannofossil species from the Serbia sites: Višnjica (near Belgrade) and Koceljeva (Western Serbia) have been published by MIHAJLOVIĆ & KNEZEVIC (1989), and JOVANOVIĆ et al. (2019a). Age of these deposits corresponds to the calcareous nannoplankton Sphenolithus heteromorphus (NN5) zone. A similarity is registered between the nannofossil assemblages of Lower Badenian deposits in Serbia, Transylvania, Slovenia, Bosnia, as reported by several authors (BARTOL, 2009; CHIRA & VULC (2003); MIHAJLOVIĆ & KNEZEVIC (1989), or between the other fauna (CHAIX et al., 2018; JOVANOVIĆ et al., 2019a).

Both Rakovica stream and Rakovica stream – old locality are not significantly different because they contain almost the same rich fossil assemblages, though the old locality seems somewhat more diverse in terms of gastropods. Chronologically, the section Rakovica stream – old locality is stratigraphically slightly older, taking into account the falling angle of the sediments, 30-40° (PETROVIĆ, 1912; EREMİJA, 1977). In the investigated area, the identification of the nannoplankton zone NN5 (MARTINI, 1971), was made based on the presence of Sphenolithus heteromorphus and the absence of Helicosphaera ampliaperta. Sphenolithus heteromorphus was recorded in the sample of the old museum collection. Its LO (Last Occurrence) in the Mediterranean was dated at ~ 13.4 Ma (ABDUL AŽIZ et al., 2008), which points to the fact that these sediments must have been older than 13.4 Ma. This means that these Rakovica sediments correspond to the NN5 calcareous nannoplankton zone (MARTINI, 1971).

The foraminifera associations from the analysed sandstones of the Rakovica stream belong to the lower Badenian, namely the older zone *A. viennensis-E. crispum*. This finding is supported by several facts. The first is that in the sandstones a species of *B. haueri* has been designated, which in Central Paratethys is exclusively associated with the Lower Badenian (ČIJA et al., 1998). Additionally, the sandstones contain a rich association of fossils, which is not a feature of the uppermost zone of Upper Badenian in Central Paratethys. Due to the few fossil communities, this zone is also referred to as the ”Impoverishment Zone” in the Vienna Basin (PAPP & SCHMID, 1985). The cause of ”Impoverished fauna” is probably the decrease in salinity of the seawater at the end of Badenian. Also, this ”Impoverishment Zone” is characteristic of the uppermost zone of Upper Badenian in the area of Northern Bosnia (VRABAC, 1999). Very important difference between the Upper Badenian and Lower-Badenian zones of *Ammonia viennensis* is that the Upper Badenian zone was formed during the regression, while the Lower Badenian zone is related to the transgression of Central Paratethys. Basal conglomerates and fossiliferous sandstones of the Rakovica stream were deposited during the transgression of the lower Badenian Sea, which is a feature of the lower Badenian sediments of the *A. viennensis* Zone, both in Serbia (JOVANOVIĆ et al., 2019a) and in Northern Bosnia (ČORIĆ et al., 2018). Upper Badenian zone sediments are highly regressive in the Vienna Basin (PAPP & SCHMID, 1985). This was stated in numerous sites of the southern margin of Central Paratethys (VRABAC et al., 2015). In the Višnjica locality near Belgrade (according to KRSTIĆ & MITROVIĆ, 1993), sediments of the upper Badenian with *Ammonia beccarii (= Ammonia viennensis)* lying over the older ones (zone with *Spiroplectamina carinata*) were drilled in the V-26 well. Biostratigraphically, they correspond to the Bolivina dilatata Zone, and their total thickness is about 40 m.

The Badenian fauna from Rakovica is thought to contain a large proportion of molluscs (ŽUJOVIĆ, 1886; PAVLOVIĆ, 1890; EREMİJA, 1977, 1987; GANIĆ et al., 2016) but understanding the age and general spa-
tietotemporal processes that shaped their distribution are yet unclear, and they are probably older than the Upper Badenian (JOVANOVIC, 2018). In previous literature, the chronostratigraphical framework of the sedimentary succession was based on the foraminifera assemblages and the entire succession is dated as Upper Badenian. In recent years, the Middle Miocene deposits of the Rakovica area have been studied, as well as the Badenian fauna. However, most of these papers refer to the outdated biostratigraphy (GANIC et al., 2016; RUNDIC et al., 2017) or misidentification of foraminifera (RUNDIC et al., 2019). For example, in the Fig. 5 (p. 114) according to RUNDIC et al. (2019), we can clearly identify Borelis haueri.

Our results show approximately 150 mollusc species occurring in the studied sections, thermophile molluscs are common. Gastropods dominated in the samples. Molluscan assemblages represent elements common in Early Miocene or early Middle Miocene (Badenian) of the Central Paratethys. The Early Badenian is characterized by a rich fauna that prefers warm water (HARZHAUSER & PILLER, 2007). Many marine molluscs display a peak in diversity during the warm Early Badenian. The high diversity reflects the warm temperature and indicated Middle Miocene Climatic Optimum, which allowed numerous thermophilic proto-Mediterranean elements to migrate into the Paratethys (HARZHAUSER et al., 2003). Despite the fact that thermophilic taxa play an important role in establishing biostratigraphic and biogeographic correlations (HARZHAUSER & PILLER, 2007), they were poorly used for biostratigraphy of Serbian deposits. Molluscs such as Xenophora deshayesi, Babyblonia eburnoides, Semicassis laevigata, Vitularia linguabovis, Persististrombus exbonellii, Persististrombus cf. lapugensis, Aporrhais dactylifera and Megacardita hoernesi, belong to the Early Miocene or appear at the beginning of the Badenian transgression. Stenohaline, thermophilic species from the investigated area are followed by numerous gastropod cerithiids (over 500 specimens) and Rissoina (over 100), indicative of the occurrence of sea-grass meadows in a predominantly shallow water environment. Therefore, the investigated sections correspond to Early Badenian age (nannoplankton zone NNS) and to TB 2.4, the Badenian sequence within the NN5 nannofossil zone.

The investigated fauna has been frequently used as reference fauna for the comparison with other famed Paratethyan Early Badenian mollusc fauna from Lower Austria (Gainfarn and Vöslau), Poland (Korytnica) and Romania (Lapugiu de Sus, Costei), and can be correlated with the Lagenidae Zone (GRIFF, 1941) of the Badenian, as well as with some classic Badenian fossiliferous sites of Serbia. From the Rakovica near Belgrade, the rich mollusc fossils presented here can be compared with that of the Golubac (Notheastern Serbia), (MIRICIC, 1932; SPAIC, 1975; JOVANOVIC, 2018). Both localities show high diversity with numerous common thermophile taxaes (Persististrombus, Xenophora, Lautoconus, Varioconus, Phasmoconus, Kalleconus, Terebra, Clavatula, Babylonia, etc.), but Golubac site is much more abundant in the number of species and specimens (JOVANOVIC, 1996). The numerous identified molluscs from Rakovica sites have a wide geographic distribution in Central Paratethys such as Flabelliptpectennesseri, Pecten aduncus, Micoloripe dentatus, Cardides partschii, Athleta rarispina, Poroxystele orientale, Xenophora deshayesi, etc. (STUDECKA, 1986; LANDAU et al., 2013; CHAIX et al., 2018). In comparison with other localities in Central Paratethys (BALUK, 2003, 2006; MIKULICZ, 1998) etc., quite the “impoverished” conoidean fauna from the Rakovica stream is observed. Turrids are important marine carnivorous gastropods that are highly diversified in shallow as well as deep water. Among Turridae and Pleurotomariidae, only seven species are identified, thermophile genus Clavatula with three species and more than 110 specimens indicated to warm climate (Clavatula granulatocincta, C. sophiae, C. schreibersii). Some rare gastropods as well as representatives of family Architectonidae (= Solaridae), etc are noticed. The architectonids known as “sundials,” are a group of worldwide distribution, mainly in subtropical and tropical waters which have an extended veliger stage enabling larvae to live in the plankton for relatively long periods and thus to cover great distances with the ocean currents, ensuring wide distributional ranges (MAURO-PIETRO & CESARE, 2016). Heliculus monilifera and Psilaxis cf. simplex have a wide chronostratigraphic distribution (LANDAU et al., 2013).
A frequent alternation of different facies is the result of inflows into the shallow sea and the characteristic of sea shore. In addition, the Rakovica stream sediments were deposited in a fairly shallow marine embayment in which the material was occasionally brought in by streams or rivers. *Coccolithus pelagicus* is common in close to river mouths (Ćorić, 2003). This type of deposition is indicated by the nature of the layers, such as wedge-shaped sedimentary deposits, gradual transitions between sediments of different colours and small differences in grain size. All data indicated that the communications with a deeper sea were established as early as in Lower Badenian. The Badenian molluscan biodiversity was shaped by a series of events connected with the geo-dynamic and climatic evolution of the Early southern margin of Central Paratethys during the early Middle Miocene (Badenian). Palaeogeography, tectonic movements and connections via bayways or canals with open sea (Andreković et al., 1989; Matenko & Radijević, 2012) present the main factors within the mollusc community, making Serbian diversity during Middle Miocene (Badenian), (Jovanović, 2018).

The lithofacial and biofacial characteristics of the studied deposits of the Rakovica stream indicate that they were deposited in a very shallow, coastal part of the infralittoral sea with normal salinity. The cosmopolitan nanofossil indicates shallowing of the sea. The small reticulofenestrids such as *R. minuta* or *R. haqii* have a wide ecological tolerance and indicate a nutrient-rich, eutrophic, near-shore environment (Aufer et al., 2015). The abundant and varied molluscan assemblage signifies subtropical conditions, favorable substrates, and abundant food supply. Large benthic forms are suggesting a shallow water high-energy environment. Therefore, the mollusc assemblage clearly indicates the infralittoral zone and, thus, the euphotic zone. Shallow marine environments are also documented by the numerous trace bioerosion on shell of molluscs (Ganić et al., 2016), as well as in the investigated materials presented here. In southern Topčider river area, sedimentation took place in shallow marine settings, resulting in deposition of coal-bearing clay, probably corresponding to Upper Badenian. This probably documents shallow or estuarine environments and coast vicinity. During the late Early Miocene and Middle Miocene (Badenian), the climate in the Central Paratethys was mainly subtropical (Kovač et al., 2007). This is supported at the southern margin by the abundance of thermophilous mollusc taxa as well as in the same interpretations made by other authors engaged in the same fieldwork (Jovanović et al., 2019c; Mandić et al., 2019). The studied mollusc fauna indicates the influence of the period of global warming, so called Middle Miocene Climatic Optimum (MMCO initial warming beginning ca. 18 Ma and with peak warming ca. 17–14.75 Ma, according to Zachos et al. (2001, 2008), that preceded the Middle Miocene Climatic Transition (global cooling during the interval ∼15–13 Ma). MMCO event initiated many ecological changes, including the influence on the development of mollusc fauna and their distribution. Literature data from around the world suggest that during the MMCO, many localities were characterized by rich invertebrate remains, containing an abundance of predominant foraminifers, gastropods and bivalves. Numerous taxa are very sensitive to temperature and salinity change. The presence of typical warm-water indicators (e.g. Conidae, Clavatulidae, Strombidae, Xenophoridae, Cypraeidae) within the studied Museum collections, supports the interpretation that studied fauna existed during the late phase of the Middle Miocene Climatic Optimum. Based on these criteria, we conclude that it is necessary to continue the revision of the Upper Badenian in Serbia, Bosnia and Herzegovina, and Croatia, on the localities where the Upper Badenian has been determined only based on the *Rotalia beccarii* zone (= Ammonia viennensis).

Conclusion

This paper presents the results of biostratigraphic studies of Badenian (early Middle Miocene) sediments of the Rakovica stream near Belgrade (Central Serbia). The Badenian sediments, rich in various fossils, have a widespread distribution in the area of Belgrade. A review of past works on the early Middle Miocene sediments of the Rakovica stream (Petrović, 1962, 1985; Ganić et al., 2016; Rundić et al., 2019), together with new fieldwork in that area and the latest research of the vicinity of Koceljeva (Jovanović et al., 2019a), have indicated the necessity of stratigraphic
revision of those beds. Micropaleontological and macropaleontological studies of the sediments of Rakovica stream herein attributed to the Lower Badenian showed the existence of a rich fauna where molluscs and foraminifera, as well as some rare nannofossils, allowed accurate dating the age of the researched sediments. The biostratigraphic analysis is based on the old Museum collections and new researches. The conducted investigation resulted in defining middle Miocene (lower Badenain, Lagenidae NN5 Zone) age of these sediments.

Our conclusions about the fossil records give new light on the stratigraphy of Rakovica sediments for further studies, providing a useful resource to the future study of fossil assemblage diversity. The results show approximately 150 mollusc species, occurring in the studied sections and Museum collections. Many Middle Miocene species belonging to extinct or extant genera have been recorded in the Paratethyan region. Further research might increase the total number of mollusc taxa indicated above for the Badenian of Rakovica.

During the late Early Miocene and Middle Miocene (Badenian), the climate in the Central Paratethys was mainly subtropical. This is supported at its southern margin by the abundance of thermophilous mollusc taxa as well as Conidae, Strombidae, Cypraeidae, Xenophoridae, Muricidae, Pleurotomidae, etc. Based on the studies of lithological composition, nannofossils, foraminifers and high paleodiversity mollusc fauna and local palaeogeographical setting, it can be concluded with reasonable certainty that the Rakovica deposits represented a shallow marine (sublittoral) environment during Lower Badenian time. The abundant and varied molluscan assemblage and other fossil assemblages indicate favorable substrates, abundant food supply, and warm-temperate to subtropical conditions. Current investigation of the fossil assemblages that are here dated as Lower Badenian will contribute to clarify more accurately the biogeographic pattern of Badenian fauna of the region, and fill in the gaps in the biostratigraphical division of the Badenian sediments of Serbia. It should also contribute to a better knowledge of the palaeocological conditions during early Middle Miocene (Badenian), when the warm climate zone was much wider than today. We conclude that it is necessary to continue the revision of the Upper Badenian in Serbia, Bosnia and Herzegovina, and Croatia, in the localities where it is determined solely based on the *Rotalia beccarii* zone (= *Ammonia viennensis*).

Acknowledgements

The authors are grateful to Dr. Zoltán Kovács (Eötvös University, Budapest), and Dr. Dan Mirea Tămaș (Babeș-Bolyai University, Kogălniceanu). This study was realized through the cooperation between Natural History Museum (Belgrade), University of Tuzla and Geological Survey of Austria (Vienna).

References

Bartol, M. 2009. Middle Miocene calcareous nannoplankton of NE Slovenia (Western Central

JOVANOVIć, G., VRABAC, S. & ĆORIć, S. 2019b. Stratigraphische revizija gornjeg badena Rakovičkog potoka kod Beograda (Centralni Paratetis, Srbija) [Stratigraphy revision of Upper Badenian of Rakovica stream near Belgrade (Central Paratethys, Serbia) – in Serbian]. Proceedings of the 2nd Geological Congress of Bosnia and Herzegovina, October 2nd–4th, 2019, 76–79.

Rundić, LJ. & Knežević, S. 2017. The Miocene Fossiliferous sites of the Avala Mt. (Belgrade area, Ser-
Stratigraphy revision of Upper Badenian of Rakovica stream near Belgrade (Central Paratethys, Serbia)

питивања која су у овом раду седименте Раковичког потока приписала доњем бадену, показала су постојање богате фауне, међу којом су мекушци и фораминифери, као и неки ретки нанофосили који су омогућили прецизно дефинисање старости истраживаних седимената. Биостратиграфска анализа се заснива и на подацима добијеним на основу старих музејских колекција. Као резултат ових истраживања утврђена је средњомиоценска (доњобаденска, НН5 Лагенидна Зона).

Наши закључци о фосилном запису бацају ново светло на стратиграфију раковичких седимената за даље студије и пружају користан ресурс за проценије разноврсности фосилних заједница. Резултати показују око 150 врста мекушаца које се јављају на проученим профилима и у музејским збиркама. Многе врсте средњег миоценца које припадају изумрлим или постојећим врстама или родовима, забележене су у региону Паратетиса. Поред тога, будућим истраживањима могао би се још повећати ред бабина укупни број мекушаца из бадена Раковице.

Током касног раног миоценца и средњег миоценца (бадена), у Централном Паратетису клима је била углавном супторпска. То се може закључити и за његов јужни обод на основу обиља термофилних врста мекушаца, као што су Conidae, Strombidae, Cypraeidae, Xenophoridae, Muricidae, Pleurotomidae, и др. На основу проценије литолошког састава, нанофосила, фо- раминифера и високог палеодиверзитета фауне мекушаца као и палеогеографског положаја, може се са сигурношћу закључити да су седименти Раковице настали у веома плиткој морској (сублиторалној) средини, током раног бадена. Богат и разноврски скуп мекушаца и других фосилних заједница указује на повољну подлогу, обиље хране и топло умерене до сунчеве услове. Проучавање фосилних заједница које су овде датиране као доњобаденске, допринеће тачнијем разјашњавању биостратиграфске дистрибуције баденске фауне у региону и попуњавању празнине у биостратиграфској поделу баденских седимената Србије. Такође би требало да допринесе бољем познавању палеоеколошких услова током раног средњег миоценца (бадена), када је зона топле климе била шира него данас. Закључујемо да је потребно наставити с разбијањем миоценских седимената и разширити геогеографску поделу баденских седимената Србије у региону. Босни и Херцеговине и Хрватској, као и на местима где је старост одређена само на основу Rotalia beccarii zone (= Ammonia viennensis).

Manuscript received February 13, 2020
Revised manuscript accepted May 25, 2020